Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Trace Gas Analyzer for Extra-Vehicular Activity

2001-07-09
2001-01-2405
The Trace Gas Analyzer (TGA, Figure 1) is a self-contained, battery-powered mass spectrometer that is designed for use by astronauts during extravehicular activities (EVA) on the International Space Station (ISS). The TGA contains a miniature quadrupole mass spectrometer array (QMSA) that determines the partial pressures of ammonia, hydrazines, nitrogen, and oxygen. The QMSA ionizes the ambient gas mixture and analyzes the component species according to their charge-to-mass ratio. The QMSA and its electronics were designed, developed, and tested by the Jet Propulsion Laboratory (1,2). Oceaneering Space Systems supported JPL in QMSA detector development by performing 3D computer for optimal volumetric integration, and by performing stress and thermal analyses to parameterize environmental performance.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
Technical Paper

Thermal Control of Mars Lander and Rover Batteries and Electronics Using Loop Heat Pipe and Phase Change Material Thermal Storage Technologies

2000-07-10
2000-01-2403
This paper describes a novel thermal control system for future Mars landers and rovers designed to keep battery temperatures within the −10 °C to +25 °C temperature range. To keep the battery temperatures above the lower limit, the system uses: 1) a phase change material (PCM) thermal storage module to store and release heat and 2) a loop heat pipe (LHP) to transfer heat from a set of Radioisotope Heater Units (RHUs) to the battery. To keep the battery temperature below the upper limit, a thermal control valve in the LHP opens to redirect the working fluid to an external radiator where excess heat is dumped to the atmosphere. The PCM thermal storage module was designed and fabricated using dodecane paraffin wax (melting point, − 9.6 °C) as the phase change material. A miniature ammonia loop heat pipe with two condensers and an integrated thermal control valve was designed and fabricated for use with the PCM thermal storage unit.
Technical Paper

The Thermal Design Evolution of the Phoenix Robotic Arm

2006-07-17
2006-01-2033
Phoenix, NASA's first Mars Scouts mission, will be launched in 2007 and will soft-land inside the Martian Arctic Circle, between north 65° and 72° North latitude, in 2008 to study the water history and to search for habitable zones. Similar to the IDD (Instrument Deployment Device) on the Mars Exploration Rovers (MER), Phoenix has a Robotic Arm (RA) which is equipped with a scoop to dig into the icy soil and to deliver the soil samples to instruments for scientific observations and measurements. As with MER, the actuators and the bearings of the Phoenix RA in a non-operating condition can survive the cold Martian night without any electrical power or any thermal insulation. The RA actuators have a minimum operating allowable flight temperature (AFT) limit of -55°C, so, warm-up heaters are required to bring the temperatures of all the RA actuators above the operating AFT limit prior to early morning operation.
Technical Paper

Test Results and Modeling of the Honda Insight using ADVISOR

2001-08-20
2001-01-2537
The National Renewable Energy Laboratory (NREL) has conducted a series of chassis dynamometer and road tests on the 2000 model-year Honda Insight. This paper will focus on results from the testing, how the results have been applied to NREL's Advanced Vehicle Simulator (ADVISOR), and how test results compare to the model predictions and published data. The chassis dynamometer testing included the FTP-75 emissions certification test procedure, highway fuel economy test, US06 aggressive driving cycle conducted at 0°C, 20°C, and 40°C, and the SC03 test performed at 35°C with the air conditioning on and with the air conditioning off. Data collection included bag and continuously sampled emissions (for the chassis tests), engine and vehicle operating parameters, battery cell temperatures and voltages, motor and auxiliary currents, and cabin temperatures.
Technical Paper

Technology Improvement Pathways to Cost-effective Vehicle Electrification

2010-04-12
2010-01-0824
Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Self Contained Atmospheric Protective Ensemble (SCAPE) Suits Redesign and Implementation at Kennedy Space Center

2005-07-11
2005-01-2959
The Self Contained Atmospheric Protective Ensemble (SCAPE) suits, worn at the Kennedy Space Center (KSC) have been updated from the original 1970's design. The suits were renamed Propellant Handlers Ensemble (PHE) but are still commonly referred to as SCAPE. Several modifications to the suit were done over the last 20 years to improve the design for operational use. However, anthropometric changes in the user population over time have not been addressed. The following study addressed anthropometric concerns in the current SCAPE population. It was found that all suits had at least one area in which the recommended upper limit was exceeded by technicians. The most common areas to exceed the upper limit were: waist circumference, chest circumference and upper thigh circumference. Forearm circumference posed the least concern unless using long gauntlet glove which cause the twist lock ring to be located at the forearm rather than the wrist.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
Technical Paper

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation

2015-04-14
2015-01-1687
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

2010-04-12
2010-01-0799
The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads.
Technical Paper

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles

2007-04-16
2007-01-0292
Plug-in hybrid electric vehicle (PHEV) technology will provide substantial reduction in petroleum consumption as demonstrated in previous studies. Platform engineering steps including, reduced mass, improved engine efficiency, relaxed performance, improved aerodynamics and rolling resistance can impact both vehicle efficiency and design. Simulations have been completed to quantify the relative impacts of platform engineering on conventional, hybrid, and PHEV powertrain design, cost, and consumption. The application of platform engineering to PHEVs reduced energy storage system requirements by more than 12%, offering potential for more widespread use of PHEV technology in an energy battery supply-limited market. Results also suggest that platform engineering may be a more cost-effective way to reduce petroleum consumption than increasing the energy storage capacity of a PHEV.
Technical Paper

Pilot Investigation: Nominal Crew Induced Forces in Zero-G

1992-07-01
921155
Vibrational disturbance magnitude and frequency on space-flight missions is often a critical factor regarding mission success. Both materials processing experiments and astronomical investigations have specific microgravity environmental requirements. Recent efforts have been made to quantify the microgravity environment on the Space Shuttle Columbia by measuring gravity levels produced by specific mission events such as Orbiter engine burns, treadmill and ergometer activities, crew sleep periods, rotating chair operations, and body mass measurement operations. However, no measurements have been made of specific, nominal crewmember activities such as translating about the middeck, flight-deck, or in the Spacelab. This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation.
Technical Paper

Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

2006-07-17
2006-01-2239
An ADvanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA’s liquid cooling garments (LCGs) used in advanced spacesuits. The manikin has 120 separate heated/sweating zones and is controlled by a finite-element physiological model of the human thermo-regulatory system. Previous testing showed the thermal sensation and comfort followed expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/arctic suit combination are compared to NASA physiological data to validate the manikin/model. An additional Orlan LCG configuration is assessed using the manikin and compared to the baseline LCG.
Technical Paper

Performance Characteristics of Lithium-Ion Cells for NASA’s Mars 2001 Lander Application

1999-08-02
1999-01-2638
NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including Mars rovers and landers. The Mars 2001 Lander (Mars Surveyor Program MSP 01) will be among one of the first missions which will utilize lithium-ion technology. This application will require two lithium-ion batteries, each being 28 V (eight cells), 25 Ah and 8 kg. In addition to the requirement of being able to supply at least 200 cycles and 90 days of operation upon the surface of Mars, the battery must be capable of operation (both charge and discharge) at temperatures as low as -20°C.
X