Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Control of Air Revitalization Using Plants: Results of the Early Human Testing Initiative Phase I Test

The Early Human Testing Initiative (EHTI) Phase I Human Test, performed by the Crew and Thermal Systems Division at Johnson Space Center, demonstrated the ability of a crop of wheat to provide air revitalization for a human test subject for a 15-day period. The test demonstrated three different methods for control of oxygen and carbon dioxide concentrations for the human/plant system and obtained data on trace contaminants generated by both the human and plants during the test and their effects on each other. The crop was planted in the Variable Pressure Growth Chamber (VPGC) on July 24, 1995 and the test subject entered the adjoining airlock on day 17 of the wheat's growth cycle. The test subject stayed in the chamber for a total of 15 days, 1 hour and 20 minutes. Air was mixed between the plant chamber and airlock to provide oxygen to the test subject and carbon dioxide to the plants by an interchamber ventilation system.
Technical Paper

A High Efficiency Magnetic Activated Sludge Reactor for Wastewater Processing

Technologies for the recycling of water are a primary goal of NASA’s advanced life support programs. Biological processes have been identified as an attractive method for wastewater processing. A fundamental new bioreactor based on a traditional activated sludge process is demonstrated that treats hygiene wastewater using magnetic iron oxide particles agglomerated with microbial cells. In this bioreactor, microbes are suspended in magnetic flocs in a wastewater medium. Instead of a traditional gravity separator used in activated sludge operations, a magnetic separator removes the microbial flocs from the outlet stream. The reactor separation operates continuously, independent of gravitational influences. The reactor has been able to simultaneously remove 98% of high levels of both nitrogenous and organic carbon impurities from the wastewater as well as achieve acceptably low levels of total suspended solids.