Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

The Personal Computer Transport Analyzer Program

2006-07-17
2006-01-2050
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
Technical Paper

The Impact of Trace Contaminants on the Shuttle Orbiter Regenerative CO2 Removal System

1995-07-01
951540
There is a possibility that trace contaminants in the Shuttle Orbiter cabin atmosphere may chemically react with amine beads found in the Regenerative Carbon Dioxide Removal System and degrade system performance. Two contaminant compounds were exposed to the amine beads, and performance changes were measured. Acetone was tested because it is sometimes found in small but appreciable quantities in the cabin, and it has chemical properties that make it a potential poison. Halon 1301 was tested because it is the fire extinguishant, and a discharge of a Halon canister would trigger high concentrations in the cabin. Acetone was shown to be weakly and reversibly adsorbed. It does not poison the bed, and the RCRS was shown to remove small quantities of acetone. Halon was shown to be inert to the amine. It does not poison the RCRS, and is not removed by the RCRS.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Crew Radiation Exposure Analysis System Based on a Commercial Stand-Alone CAD System

1992-07-01
921372
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
Technical Paper

Solar Proton Event Observations at Mars with MARIE

2003-07-07
2003-01-2329
The 2001 Mars Odyssey spacecraft Martian Radiation Environment Experiment (MARIE) is a solid-state silicon telescope high-energy particle detector designed to measure galactic cosmic radiation (GCR) and solar particle events (SPEs) in the 20 – 500 MeV/nucleon energy range. In this paper we discuss the instrument design and focus on the observations and measurements of SPEs at Mars. These are the first-ever SPE measurements at Mars. The measurements are compared with the geostationary GOES satellite SPE measurements. We also discuss some of the current interplanetary particle propagation and diffusion theories and models. The MARIE SPE measurements are compared with these existing models.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Technical Paper

Rapid Microbial Analysis during Simulated Surface EVA at Meteor Crater: Implications for Human Exploration of the Moon and Mars

2006-07-17
2006-01-2006
Procedures for rapid microbiological analysis were performed during simulated surface extra-vehicular activity (EVA) at Meteor Crater, Arizona. The fully suited operator swabbed rock (‘unknown’ sample), spacesuit glove (contamination control) and air (negative control). Each swab sample was analyzed for lipopolysaccharide (LPS) and β-1, 3-glucan within 10 minutes by the handheld LOCAD PTS instrument, scheduled for flight to ISS on space shuttle STS-116. This simulated a rapid and preliminary ‘life detection’ test (with contamination control) that a human could perform on Mars. Eight techniques were also evaluated for their ability to clean and remove LPS and β-1, 3-glucan from five surface materials of the EVA Mobility Unit (EMU). While chemical/mechanical techniques were effective at cleaning smooth surfaces (e.g. RTV silicon), they were less so with porous fabrics (e.g. TMG gauntlet).
Technical Paper

Methodologies for Critical Body Organ Space Radiation Risk Assessments

1993-07-01
932211
One of the risks associated with long-term space flights is cancer incidence resulting from chronic exposure to space radiation. Assessment of incurred risk from radiation exposure requires quantifying the dose throughout the body. The space radiation exposure received by Space Shuttle astronauts is measured by thermoluminescent dosimeters (TLDs) worn during every mission. These dosimeters measure the absorbed dose to the skin, but the dose to internal organs is required for estimating the cancer risk induced by space radiation. A method to extrapolate these skin dose measurements to realistic organ specific dose estimates, using the Computerized Anatomical Man (CAM) and Computerized Anatomical Female (CAF) models, is discussed in detail. A transport code, which propagates high energy nucleon and charged particles, is combined with the CAM/CAF-generated shielding areal distributions to evaluate the absorbed dose at selected organ sites.
Technical Paper

International Space Station Mobile Dosimetry Unit: A Comparison of Flight Measurements With Model Calculations

2004-07-19
2004-01-2277
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 Mobile Dosimetry Units (MDU) during 2001. The Liulin-E094 was part of the Dosimetric Mapping experiment lead by Dr. G. Reitz, DLR. Four MDUs were placed at fixed locations: one unit in the ISS “Unity” Node-1 and three units were located in the US Laboratory module. Space radiation flight measurements were obtained during the time period May 11 – July 26, 2001. In this paper we discuss the development of an MDU shielding model using combinatorial geometry and 3-D visualization and the orientation and placement at the four locations within the ISS. Four shielding distributions were generated for the combined ISS and MDU shielding models. The AP8MAX trapped proton model was used to compute the daily absorbed dose for the four MDUs and are compared with the flight measurements.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Technical Paper

Development of the Flame Detector for Space Station Freedom

1993-07-01
932106
One of the primary safety concerns for Space Station Freedom pressurized modules is fire. Some Freedom modules are unattended for long periods of time. In other cases, enclosed, pressurized volumes are not open to crew monitoring. As a result, a fire detection system is required to continuously monitor all modules for combustion. This paper briefly reviews the overall design for the Freedom fire detection system, and the design of the two basic types of detectors: smoke and flame. The smoke detectors monitor particulates in small open areas, stand-offs, end-cones, and racks. The flame detectors survey open areas for radiation at wavelengths and intensities characteristic of combustion. Responses from detectors are evaluated by Freedom's data management system to determine the presence of combustion and to recommend appropriate action.
Technical Paper

Depth Dose Exposures in the Magnetosphere of Jupiter at the Icy Moons: Callisto, Ganymede, and Europa

2004-07-19
2004-01-2326
The highly successful Galileo mission made a number of startling and remarkable discoveries during its eight-year tour in the harsh Jupiter radiation environment. Two of these revelations were: 1) salty oceans lying under an icy crust of the Galilean moons: Europa, Ganymede and Callisto, and 2) the possible existence or remnants of life, especially on Europa, which has a very tenuous atmosphere of oxygen. Galileo radiation measurement data from the Energetic Particle Detector (EPD) have been used (Garrett et al., 2003) to update the trapped electron environment model, GIRE: Galileo Interim Radiation Environment, in the range of L (L: McIlwain parameter – see ref. 6) = 8–16 Rj (Rj: radius of Jupiter ≈ 71,400 km) with plans to extend the model for both electrons and protons as more data are reduced and analyzed.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
X