Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Technical Paper

Validation of the SCARLET Advanced Array on DS1

1999-08-02
1999-01-2630
In October, 1998, the first of the NASA New Millennium Spacecraft, DS1, was successfully launched into space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET). Although part of the advanced technology validation study, the array is also the spacecraft power source. Funded by BMDO, the SCARLET™ concentrator solar array is the first spaceflight application of a refractive lens concentrator. As part of the DS1 validation process, the amount of array diagnostics is very extensive. The data obtained includes temperature measurements at numerous locations on the 2-wing solar array. For each individual panel, a 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance.
Technical Paper

Understanding the Charging Flexibility of Shared Automated Electric Vehicle Fleets

2020-04-14
2020-01-0941
The combined anticipated trends of vehicle sharing (ride-hailing), automated control, and powertrain electrification are poised to disrupt the current paradigm of predominately owner-driven gasoline vehicles with low levels of utilization. Shared, automated, electric vehicle (SAEV) fleets offer the potential for lower cost and emissions and have garnered significant interest among the research community. While promising, unmanaged operation of these fleets may lead to unintended negative consequences. One potentially unintended consequence is a high quantity of SAEVs charging during peak demand hours on the electric grid, potentially increasing the required generation capacity. This research explores the flexibility associated with charging loads demanded by SAEV fleets in response to servicing personal mobility travel demands. Travel demand is synthesized in four major United States metropolitan areas: Detroit, MI; Austin, TX; Washington, DC; and Miami, FL.
Technical Paper

Trace Gas Analyzer for Extra-Vehicular Activity

2001-07-09
2001-01-2405
The Trace Gas Analyzer (TGA, Figure 1) is a self-contained, battery-powered mass spectrometer that is designed for use by astronauts during extravehicular activities (EVA) on the International Space Station (ISS). The TGA contains a miniature quadrupole mass spectrometer array (QMSA) that determines the partial pressures of ammonia, hydrazines, nitrogen, and oxygen. The QMSA ionizes the ambient gas mixture and analyzes the component species according to their charge-to-mass ratio. The QMSA and its electronics were designed, developed, and tested by the Jet Propulsion Laboratory (1,2). Oceaneering Space Systems supported JPL in QMSA detector development by performing 3D computer for optimal volumetric integration, and by performing stress and thermal analyses to parameterize environmental performance.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Thermal Design and Flight Experience of the Mars Exploration Rover Spacecraft Computer-Controlled, Propulsion Line Heaters

2004-07-19
2004-01-2412
As part of the Mars Exploration Rover (MER) project, the National Aeronautics and Space Administration (NASA) launched two rovers in June and July of 2003 and successfully landed both of them on Mars in January of 2004. The cruise stage of each spacecraft (S/C) housed most of the hardware needed to complete the cruise from Earth to Mars, including the propulsion system. Propulsion lines brought hydrazine propellant from tanks under the cruise stage to attitude-control thrusters located on the periphery of the cruise stage. Hydrazine will freeze in the propellant lines if it reaches temperatures below 1.7°C. Thermal control of the propulsion lines was a mission critical function of the thermal subsystem; a frozen propellant line could have resulted in loss of attitude control and complete loss of the S/C.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

2006-07-17
2006-01-2156
For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.
Technical Paper

The Impact of Metal-free Solar Reflective Film on Vehicle Climate Control

2001-05-14
2001-01-1721
The air-conditioning system can significantly impact the fuel economy and tailpipe emissions of automobiles. If the peak soak temperature of the passenger compartment can be reduced, the air-conditioner compressor can potentially be downsized while maintaining human thermal comfort. Solar reflective film is one way to reduce the peak soak temperature by reducing the solar heat gain into the passenger compartment. A 3M non-metallic solar reflective film (SRF) was tested in two minivans and two sport utility vehicles (SUV). The peak soak temperature was reduced resulting in a quicker cooldown. Using these data, a reduction in air-conditioner size was estimated and the fuel economy and tailpipe emissions were predicted.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Testing and Model Correlation of Sublimator Driven Coldplate Coupons and EDU

2009-07-12
2009-01-2479
The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a more traditional thermal control system. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement and/or short transport distances. Tests were performed on coupons and an Engineering Development Unit (EDU) at NASA's Johnson Space Center to better understand the basic operational principles and to validate the analytical methods being used for the SDC development.
Journal Article

Start-Up Characteristics and Gravity Effects on a Medium/High-Lift Heat Pump using Advanced Hybrid Loop Technology

2008-06-29
2008-01-1959
Thermal characterization was performed on a vapor compression heat pump using a novel, hybrid two phase loop design. Previous work on this technology has demonstrated its ability to provide passive phase separation and flow control based on capillary action. This provides high quality vapor to the compressor without relying on gravity-based phase separation or other active devices. This paper describes the subsequent work done to characterize evaporator performance under various startup scenarios, tilt angles, and heat loads. The use of a thermal expansion valve as a method to regulate operation was investigated. The effect of past history of use on startup behavior was also studied. Testing under various tilt angles showed evaporator performance to be affected by both adverse and favorable tilts for the given compressor. And depending on the distribution of liquid in the system upon startup, markedly different performance can result for the same system settings and heat loads.
Technical Paper

Space Shuttle Crew Compartment Debris/Contamination

1992-07-01
921345
Debris in the Orbiter crew compartment of early Shuttle missions created crew health concerns and physiological discomfort, and was the cause of some equipment malfunctions. Debris from Orbiters during flight and processing was analyzed, quantized, and evaluated to determine its source. Records were kept on the amount of debris vacuumed by the crew during on-orbit cleaning and the amount found on air-cooled avionics boxes during ground turnaround. After ground turnaround operations at Kennedy Space Center and Palmdale were reviewed from a facility, materials use, and materials control standpoint, the following remedial steps were taken.
Technical Paper

Sorbent Bed Acquisition and Compression of Carbon Dioxide from the Mars Atmosphere

2000-07-10
2000-01-2237
Human exploration of Mars as well as unmanned sample return missions from Mars can benefit greatly from the use of propellants produced from the resources available from the atmosphere of Mars. The first major step of any in-situ propellant production (ISPP) system is to acquire carbon dioxide (CO2) from the Mars atmosphere and compress it for further chemical processing. One system that performs this step is called a Mars Atmosphere Acquisition and Compression (MAAC) unit. A simple prototype MAAC was developed by JPL as part of the Mars ISPP Precursor (MIP) experiment package for inclusion on the Mars 2001 Surveyor Lander. The MAAC consists of a valved enclosure packed with a sorbent material which selectively adsorbs CO2 from the Mars atmosphere (valves open), desorbs and compresses the acquired CO2 by heating (valves closed) and then delivers the pressurized CO2 to an oxygen generating system where the CO2 is electrolyzed to produce oxygen.
Technical Paper

Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

2015-04-14
2015-01-0351
Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
Journal Article

RouteE: A Vehicle Energy Consumption Prediction Engine

2020-04-14
2020-01-0939
The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts.
X