Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Trends in Engine Valve Development for Automobiles and Motorcycles

2000-03-06
2000-01-0907
Engine valve development trends are to first, reduce the costly metal content and secondly, increase strength or reduce weight. These developments can be used to reduce valve cost or fuel consumption or increase power. The authors developed a new strain age hardening type alloy, NCF2415C, which has both good cold forgeability and heat resistance. Its chemical composition is Fe-24Ni-15Cr-2.2Ti-1.5Al-0.5Nb-0.02C-.006B-2Cu. This new alloy and the establishment f cold forging technology made it possible to develop cold forged exhaust valves having durability equal or better than the conventional hot forged exhaust valves.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Development of the Ferritic Stainless Steel Welding Wire Providing Fine Grain Microstructure Weld Metal for the Components of Automotive Exhaust System

2003-03-03
2003-01-0979
Ferritic stainless steel gas metal arc welding (GMAW) wires have been widely using for automotive exhaust system components made of ferritic stainless steels. In order to enhance the high temperature strength of weld metal, it is necessary to make the microstructure of weld metal finer. In this study, the effect of the chemistry of ferritic stainless steel GMAW wire on the weld metal microstructure was investigated and new ferritic stainless steel GMAW wire providing fine grain microstructure of the weld metal was developed to improve high temperature mechanical properties, oxidation resistance, corrosion resistance of the weld metal and weldabiliy of the wire.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Journal Article

Development of Thermal Fatigue Resistant Ferritic Cast Steel for Turbine Housing of Diesel Engine Automobile

2009-04-20
2009-01-0215
In recent years, the temperature of automobile exhaust gas is on a rising trend due to lowering pollutant emissions and improving fuel economy, and exhaust gas temperature reaches as high as 1173K in the case of diesel engine cars. Against this background, Ni-resist D-5S cast iron has been chosen extensively as a turbine housing material for the diesel engine cars. But, Ni-resist D-5S has become a material of great cost volatility due to high Nickel content of 35 mass%, which price is expensive and unstable. On the contrary Ferritic cast steels, which possesses favorable thermal fatigue properties and good material cost stability, are considered to be promising substitutions for the Ni-resist D-5S. However conventional ferritic cast steels have relatively high melting points, which cause poor castability.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of Nitrocarburizing Steel for Crankshafts

1999-03-01
1999-01-0601
The purpose of our research is to omit normalizing after hot forging in nitrocarburized crankshafts. Based on fundamental studies about the influence of chemical composition on as-forged and nitrocarburized properties, the authors have developed a new nitrocarburizing steel composed of 0.3% carbon, 0.8% manganese, and 0.02% nitrogen. The newly designed crankshafts for compact cars using the steel can be in use without the normalizing and have equivalent properties to conventional crankshafts, though the treatment is an indispensable process for conventional ones.
Technical Paper

Development of New High Strength Spring Steel and Its Application to Automotive Coil Spring

2000-03-06
2000-01-0098
For the purpose of saving natural resources and energy, the requirements of vehicle weight-saving have been increasing continuously. As for Automotive Suspension Coil Spring, its weight-saving has been achieved by increasing the design stress. Since the increase of design stress requires higher fatigue life and sag resistance, the strength of spring is usually increased. However, in case of the conventional spring steel, the high strength over σB=1900MPa can dramatically reduce the corrosion fatigue life of spring, to decrease the reliability of spring at the actual usage. In this paper, newly developed spring steel material, satisfying higher strength and corrosion fatigue life simultaneously, is proposed, and its application of Automotive Suspension Coil Spring under the appropriate spring manufacturing processes in introduced.
Technical Paper

Development of High Toughness Bainitic Microalloyed Forging Steel

1998-02-01
980883
The influence of chemical compositions and forging conditions on mechanical properties of forged bainitic steels were studied. Manganese and chromium are useful to produce bainite structure while carbon and vanadium are good to control the mechanical properties of the steels. One of the compositions is 0.25 % C - 2.1 % Mn - 0.7 % Cr - 0.15 % V of which tensile strength is 1000 MPa and impact value (2 mm U type notched specimen) is 50 J/cm2 for 100 mm diameter bars. Bainitic steels have lower fatigue limit in the case of smooth specimen than ferrite-pearlite microalloyed steels but have higher fatigue limit in the case of notched specimen.
Technical Paper

Development of Case Hardening Steel for Cold Forging without Spheroidizing

1996-02-01
960315
Based on fundamental research about the influence of chemical composition on rolled bar hardness, hardenability, case hardenability, cold formability, and mechanical properties, a new case hardening steel has been developed which can be cold forged without spheroidizing annealing. The steel contains boron and the Si and Mn contents are less than conventional steels. The steel shows fatigue strength equivalent to the conventional steels and better toughness and machinability.
Technical Paper

Application of High Thermal Conductivity Steels to Automotive Aluminum Die-Cast Molds

2007-04-16
2007-01-1221
In recent years, the use of aluminum die cast parts in automobile manufacturing has increased due to greater demand for automotive weight reduction. For even wider application, it is necessary to reduce manufacturing costs and improve product quality. Finite element method (FEM) analysis suggested that a new material, featuring 50% improved thermal conductivity within the working temperature of the die compared to the conventional 5% chromium hot work tool steel AISI-H13 (H-13), would decrease thermal stress on the die surface and lower the maximum surface temperature. As a result, the reduced stress should increase the die service life with respect to heat checks. At the same time, the reduced surface temperature should increase the cooling rate of die cast products, which will in turn improve product quality due to finer structure formation.
X