Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibro-acoustic FEA Modeling of Two Layer Trim Systems

2005-05-16
2005-01-2325
This paper investigates the potential of using FEA poro-elastic Biot elements for the modeling carpet-like trim systems in a simplified setup. A comparison between FEA computations and experiments is presented for two layer (mass-spring) trim systems placed on a test-rig consisting in a 510×354×1.6 mm flat steel plate clamped in a stiff frame excited at its base. Results are presented for a given heavy layer with two different poro-elastic materials: one foam and one fibrous material. The investigations included accelerometer measurements on the steel plate, laser-doppler vibrometer scans of the heavy layer surface, sound pressure measurements in free field at a distance of 1 meter above the plate, as well as sound pressure in a closed rectangular concrete-walled cavity (0.5×0.6×0.7 m) put on top of the test-rig. Computations were carried out using a commercial FEA software implementing the Biot theory for poro-elastic media.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
Technical Paper

Utilization of Advanced Pt/Rh TWC Technologies for Advanced Gasoline Applications with Different Cold Start Strategies

2001-03-05
2001-01-0927
This paper describes the results of a joint development program focussing on the introduction of the new generation of Pt/Rh-technology for current and future emission standards as a cost effective alternative to the in serial Pd/Rh based exhaust gas concepts. In the initial phase of the program combinations of Pd- and Pt-based three-way catalyst technologies were evaluated on vehicles equipped with a 8 cylinder engine. One goal in this portion of the study was to achieve technical equivalence between a viable Pd-based technology and the new Pt/Rh technology in the underfloor position at lower precious metal loading. A combination of a close-coupled Pd/Rh technology and the new Pt/Rh in the underfloor position was able to meet the emission targets at significant lower costs of the system after a catalyst aging that resembles more than 100.000 km of vehicle German highway driving.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The Role of Engine Oil Formulations on Fluid Diagnostics

2002-10-21
2002-01-2677
Historically, vehicle fluid condition has been monitored by measuring miles driven or hours operated. Many current vehicles have more sophisticated monitoring methods that use additional variables such as fuel consumption, engine temperature and engine revolutions to predict fluid condition. None of these monitoring means, however, actually measures a fluid property to determine condition, and that is about to change. New sensors and diagnostic systems are being developed that allow real time measurement of some lubricant physical and/or chemical properties and interpret the results in order to recommend oil change intervals and maximize performance. Many of these new sensors use electrochemical or acoustic wave technologies. This paper examines the use of these two technologies to determine engine oil condition and focuses on the effects of lubricant chemistry on interpreting the results.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts

1999-03-01
1999-01-0272
The present paper describes the results of a joint development program focussing on a system approach to meet the EURO IV emission standards for an upper class passenger car equipped with a newly developed high displacement gasoline engine. Based on the well known catalyst systems of recent V6- and V8-engines for the EURO III emission standards with a combination of close coupled catalysts and underfloor catalysts, the specific boundary conditions of an engine with an even larger engine displacement had to be considered. These boundary conditions consist of the space requirements in the engine compartment, the power/torque requirements and the cost requirements for the complete aftertreatment system. Theoretical studies and computer modeling showed essential improvements in catalyst performance by introducing thin wall substrates with low thermal inertia as well as high cell densities with increased geometric surface area.
Technical Paper

The Development of Predictive Models for Non-Acidic Lubricity Agents (NALA) using Quantitative Structure Activity Relationships (QSAR)

2005-10-24
2005-01-3900
This study describes the use of Quantitative Structure Activity Relationships (QSAR) to develop predictive models for non-acidic Lubricity agents. The work demonstrates the importance of separating certain chemical families to give better and more robust equations rather than grouping a whole data set together. These models can then be used as important tools in further development work by predicting activities of new compounds before actual synthesis/testing.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Real-Time Estimation of the Exhaust Gas Recirculation Ratio Based on Cylinder Pressure Signals

2007-04-16
2007-01-0493
External Exhaust Gas Recirculation, EGR, is a central issue in controlling emissions in up-to-date diesel engines. An empirical model has been developed that calculates the EGR ratio as a function of the engine speed, the engine load and special characteristics of the heat release rate. It was found that three combustion characteristics correlate well with the EGR ratio. These characteristics are the ignition delay, the premixed combustion ratio and the mixing-controlled combustion ratio. The calculation of these characteristics is based on parameter subsets, which were determined using an optimization routine. The model presented was developed based on these optimized characteristics.
Technical Paper

Potential of Common Rail Injection System for Passenger Car DI Diesel Engines

2000-03-06
2000-01-0944
The improvement of DI diesel engines for passenger cars to fulfil pollutant emission limits and lower fuel consumption and noise is closely linked to continued development of the injection system. Today's injection systems demonstrate varying potential in terms of the flexibility of injection parameters for improving mixture formation and combustion. DaimlerChrysler evaluated the potential of different injection systems, looking particularly at the distributor pump, unit injection system and Common Rail system. Based on the results of these investigations, the Common Rail system was selected. The tests presented in this paper were performed on a single-cylinder engine with Common Rail system. They focused on increased rail pressure in combination with different nozzle geometries. The results show significant benefits in NOx/smoke trade off at part load conditions with high EGR rate.
Technical Paper

Possible Exhaust Gas Aftertreatment Concepts for Passenger Car Diesel Engines with Sulphur-free Fuel

1999-03-01
1999-01-1328
In order to fulfill future emissions standards, there is a need for new exhaust-gas aftertreatment concepts, with NOx-emissions reduction in passenger car diesel engines being of particular importance. The NOx storage catalyst is one of the technologies currently under discussion with high NOx conversion potential, and which is under development at DaimlerChrysler for EURO IV standards. With this system, the nitrogen oxides contained in the diesel exhaust gas are stored under lean exhaust-gas conditions and are reduced in the catalyst through an enriched air-fuel ratio of the exhaust-gas and favorable thermal conditions. Hydrocarbons, carbon monoxide and hydrogen are used as reducing agents. DaimlerChrysler has analyzed the effect of sulphur contained in the fuel on the operation of various catalysts during laboratory and engine testing. The sulphur dioxide in the exhaust gas generates sulfates, which remain on the catalyst when nitrate compounds are regenerated briefly.
Technical Paper

Polymer Additives as Mist Suppressants in Metalworking Fluids Part IIa: Preliminary Laboratory and Plant Studies - Water Soluble Fluids

1998-02-23
980097
Mist generated from water-soluble fluids used in machining operations represents a potentially significant contribution to worker exposure to airborne particles. Part I of this study [1], discussed polymer additives as mist suppressants for straight mineral oil metalworking fluids (MWF), which have been successfully employed at several locations. This paper focuses on recent developments in polymer mist suppressants for water-based MWF, particularly in the production environment. The polymer developed and tested in this study functions on a similar basis to that for straight oil anti-mist additives. This water soluble polymer suppresses the formation of small mist droplets and results in a distribution of larger droplet sizes. These larger droplets tend to settle out near the point of machining, resulting in a significant decrease in the total airborne mist concentration.
Technical Paper

Plasma-Enhanced Adsorption and Reduction on Lean NOx-Catalysts

2001-09-24
2001-01-3567
The influence of adsorption and desorption processes on the non-thermal plasma enhanced catalytic reduction of NOx on NaZSM5- and Al2O3-based lean-NOx catalysts (Pt-NH4ZSM5, Cu-NaZSM5, Fe-NaZSM5, Pt-Al2O3, Pd-Al2O3, CuO-Al2O3, Ag-Al2O3) was investigated by temperature programmed reaction experiments in the temperature range from 100 °C to 600 °C. Dodecane was used as a reducing agent. Strong HC adsorption- and desorption effects were observed on the zeolite catalysts, which were not influenced by plasma-pretreatment. Adsorption of NO2 and desorption of NO occurred on Al2O3-based catalysts. By plasma-pretreatment adsorption of NO2 was induced at low temperatures. NOx-reduction rates of the catalysts Cu-NaZSM5, Fe-NaZSM5, and the Ag-Al2O3 were increased substantially by plasma-pretreatment. Both plasma-induced and catalytic oxidation of HCs were limiting factors of the NOx-reduction obtained on these catalysts.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
X