Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Monitoring, Feedback and Control of Urea SCR Dosing Systems for NOx Reduction: Utilizing an Embedded Model and Ammonia Sensing

2008-04-14
2008-01-1325
This paper presents a monitoring, feedback and control system for SCR urea dosing utilizing an embedded model and NH3 sensing after the SCR for loop closing control. A one-dimensional SCR model was developed and embedded in a Simulink/Matlab environment. This embedded model is utilized for on-line, real time control of 32.5% aqueous urea dosing in the exhaust stream. Engine testing and simulation are used with the embedded SCR model and NH3 sensor closed loop feedback to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. The paper explores these advantages under heavy duty FTP cycle conditions. The potential benefits include SCR size optimization and fuel consumption rate reduction under certain operating conditions.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
X