Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of Spark Plug for Ion Current Misfire Detection System

2012-04-16
2012-01-1253
In this paper, the authors introduce the spark plug for misfire detection system by ion current. In order to realize high accuracy misfire detection, the signal of ion current must be larger than that of noise. For maintaining ion signal in all designed lifetime, the configuration and initial condition of spark position are derived by an experiment and consideration about degradation in use. Additionally, the cause of noise is determined by an observation and a theoretical study, and we indicate the method to inhibit noise efficiently. Finally, effect of the methods found by these two approaches is confirmed with an engine, and we propose specifications of spark plug satisfying the condition that realize high accuracy detection by ion current.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Design of a High Ignitability Spark Plug with a Flow Guide Plate

2015-04-14
2015-01-0780
In a high gas velocity condition in cylinder, the ground electrode orientation of the spark plug causes the ignitability to fluctuate due to the change in gas flow around the spark gap. As one method to solve this issue we have focused on controlling the gas flow by plate like airfoils or turbine blades. We have developed gas flow control technology for the spark plug to achieve high ignitability under the worst case condition of ground electrode orientation. The adoption of current ground electrode welding technology has allowed us to locate a flow guide plate on the plug housing.
X