Refine Your Search

Topic

Author

Search Results

Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Vehicle Exhaust Emissions Simulator- A Quality Control Tool to evaluate the Performance of Low Level Emission Sampling and Analytical Systems

2003-03-03
2003-01-0391
As the standards for exhaust emissions have become more stringent, the quality control tools used to evaluate the performance of low level samplers and analyzers has become more important. The Vehicle Exhaust Emissions Simulator (VEES) was developed to evaluate the performance of vehicle or engine exhaust emissions sampling and analytical systems. The simulator emulates emissions from low-emitting gasoline vehicles by producing a simulated exhaust stream containing emission constituents (HC, CO, CO2, and NOx) injected via Mass Flow Controllers (MFCs). This paper discusses various applications of the VEES as a quality control tool for ULEV and SULEV testing. A comparison is made between the injected amount of exhaust species by the VEES and the amounts recovered by the different sampling systems. Different root cause scenarios are discussed as to the source of discrepancies between the results on the CVS and BMD for different driving cycles.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

Using a Vehicle Exhaust Emission Simulator (VEES) as a Cross Check Tool for Emission Test Cell Correlation

2005-04-11
2005-01-0687
It is becoming increasingly difficult to obtain good repeatability from running lab vehicle correlation testing, since vehicle variability is so significant at the Low ULEV and SULEV emissions levels. These new emission standards are becoming so stringent that it makes it very difficult to distinguish whether a problem is a result of vehicle variability, test cell sampling or the analytical system. A vehicle exhaust emission simulator (VEES) developed by Horiba, can simulate emissions from low emitting gasoline vehicles by producing tailpipe flow rates containing emissions constituents ( HC, CH4, CO, NOx, CO2 ) injected at the tailpipe flow stream via mass flow controllers.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Truck Body Mount Load Prediction from Wheel Force Transducer Measurements

2005-04-11
2005-01-1404
This paper introduces a reliable method to calculate body mount loads from wheel-force-transducer (WFT) measurements on framed vehicles. The method would significantly reduce time and cost in vehicle development process. The prediction method includes two parts: Hybrid Load Analysis (HLA) that has been used by DaimlerChrysler Corporation and Body Mount Load Analysis (BMLA) that is introduced by this paper for the first time. The method is validated on a body-on-frame SUV and a pickup truck through one proving ground events. The example shown in this paper is for a SUV and one of the most severe events. In HLA, the loads at suspension-to-frame attachments are calculated from spindle loads measured by WFT. In BMLA, body mount loads were calculated using outputs of HLA with detailed finite-element-modeled frame and body. The loads are compared with measured body mount loads. The comparisons are conducted in range, standard deviation (S.D.), and fatigue pseudo-damage.
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Technical Paper

The Power Performance and the Fuel Economy Estimation of HV for Vehicle Concept Planning Using VHDL-AMS Full Vehicle Simulation

2012-04-16
2012-01-1025
In order to reduce CO₂, Electric Vehicles (EV) and Hybrid Vehicles (HV) are effective. Those types of vehicles have powertrains from conventional vehicles. Those new powertrains drastically improve their efficiency from conventional vehicles keeping the same or superior power performance. On the other hand, those vehicles have an issue for thermal energy shortage during warming up process. The thermal energy is very large, and seriously affects the fuel economy for HV and the mileage for EV. In this paper, we propose VHDL-AMS multi-domain simulation technique for the estimation of the vehicle performance at the concept planning stage. The VHDL-AMS is IEEE and IEC standardized language, which supports not only multi-domain (physics) but also encryption. The common modeling language and encryption standard is indispensable for full-vehicle simulation.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
Technical Paper

Parameters Affecting Direct Vehicle Exhaust Flow Measurement

2003-03-03
2003-01-0781
As SULEV emission regulations approach, the bag mini-diluter (BMD) technology is gaining acceptance as a replacement for the existing constant volume sampler (CVS) for SULEV exhaust emission measurement and certification. The heart of the BMD system is the direct vehicle exhaust (DVE) flow measurement system. Due to the transient nature of vehicle exhaust during a standard FTP emission test cycle, the DVE must be capable of rapid and accurate response in order to track these varying exhaust flow rates. The DVE must also be robust enough to accurately measure flow rate despite variations in exhaust gas composition, pulsation effects, and rapid changes in both exhaust temperature and pressure. One of the primary DVE systems used on BMDs is the E-Flow, an ultrasonic flow meter manufactured by Flow Technologies, Inc.
Technical Paper

New Methods for Emission Analyzer Calibrations

1999-03-01
1999-01-0153
Traditionally, vehicle emission testing has used non-intelligent analyzers to meet government-regulated standards. Typically, these instruments would provide a 0 to 5-volt signal to a central test cell computer which would then handle all calibrations including analyzer linearization, zero and span corrections, stability checks, time delays, and sample readings. Modern gas analyzers now contain intelligence within each individual analyzer; this has caused the calibration methods to change dramatically. New methods were developed in the bench control system to take advantage of the intelligence of the analyzers by creating a distributed control architecture. The zeroing, spanning, and linearization methods are quite different from the previous protocols. The results, however, will provide more accurate reading to be used in calculating vehicle emissions.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Technical Paper

Indoor Pass-by Noise Evaluation System Capable of Reproducing ISO Actual Road Surface Tire Noise

2016-04-05
2016-01-0479
Generally, pass-by noise levels measured outdoors vary according to the influence of weather conditions, background noise and the driver’s skill. Manufactures, therefore, are trying to reproduce proving ground driving conditions on a chassis dynamometer. The tire noise that occurs on actual road surfaces, however, is difficult to reproduce in indoor tests. In 2016, new pass-by noise regulations (UN R51-03) will take effect in Europe, Japan and other countries. Furthermore, stricter regulations (2dB) will take effect in 2020. In addition to the acceleration runs required under current regulations, UN R51-03 will require constant speed runs. Therefore, an efficient measurement methods are necessary for vehicle development. To solve the above mentioned issues, an indoor evaluation system capable of reproducing the tire noise that occurs on road surfaces has been developed.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Improvement of motor calibration by using deep learning

2019-12-19
2019-01-2310
Knowledge of experts is necessary for judging motor current waveforms. Here, we develop an automatic judgement system for motor current waveform by establishing an AI model trained by knowledge of experts and CAE technology.
Journal Article

Hierarchical Accumulative Validation of Executable Control Specifications

2013-04-08
2013-01-0430
The application of Model-Based Development (MBD) techniques for automotive control system and software development have become standard processes due to the potential for reduced development time and improved specification quality. In order to improve development productivity even further, it is imperative to introduce a systematic Verification and Validation (V&V) process to further minimize development time and human resources while ensuring control specification quality when developing large complex systems. Traditional methods for validating control specifications have been limited by control specification scale, structure and complexity as well as computational limitations restricting their application within a systematic model-based V&V process. In order to address these issues, Toyota developed Hierarchical Accumulative Validation (HAV) for systematically validating functionally structured executable control specifications.
Journal Article

Experimental Demonstration of Smart Charging and Vehicle-to-Home Technologies for Plugin Electric Vehicles Coordinated with Home Energy Management Systems for Automated Demand Response

2016-04-05
2016-01-0160
In this paper, we consider smart charging and vehicle-to-home (V2H) technologies for plugin electric vehicles coordinated with home energy management systems (HEMS) for automated demand response. In this system, plugin electric vehicles automatically react to demand response events with or without HEMS’s coordination, while vehicles are charged and discharged (i.e., V2H) in appropriate time slots by taking into account demand response events, time-ofuse rate information, and users’ vehicle usage plan. We introduce three approaches on home energy management: centralized energy control, distributed energy control, and coordinated energy control. We implemented smart charging and V2H systems by employing two sets of standardized communication protocols: one using OpenADR 2.0b, SEP 2.0, and SAE standards and the other using OpenADR 2.0b, ECHONET Lite, and ISO/IEC 15118.
X