Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Technical Paper

Trace Gas Analyzer for Extra-Vehicular Activity

2001-07-09
2001-01-2405
The Trace Gas Analyzer (TGA, Figure 1) is a self-contained, battery-powered mass spectrometer that is designed for use by astronauts during extravehicular activities (EVA) on the International Space Station (ISS). The TGA contains a miniature quadrupole mass spectrometer array (QMSA) that determines the partial pressures of ammonia, hydrazines, nitrogen, and oxygen. The QMSA ionizes the ambient gas mixture and analyzes the component species according to their charge-to-mass ratio. The QMSA and its electronics were designed, developed, and tested by the Jet Propulsion Laboratory (1,2). Oceaneering Space Systems supported JPL in QMSA detector development by performing 3D computer for optimal volumetric integration, and by performing stress and thermal analyses to parameterize environmental performance.
Journal Article

RouteE: A Vehicle Energy Consumption Prediction Engine

2020-04-14
2020-01-0939
The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts.
Technical Paper

Modeling of Human Thermal Comfort

2001-06-26
2001-01-2117
Current vehicle climate control systems are dramatically overpowered because they are designed to condition the cabin air mass in a specified period of time. A more effective and energy efficient objective is to directly achieve thermal comfort of the passengers. NREL is developing numerical and experimental tools to predict human thermal comfort in non-uniform transient thermal environments. These tools include a finite element model of human thermal physiology, a psychological model that predicts both local and global thermal comfort, and a high spatial resolution sweating thermal manikin for testing in actual vehicles.
Technical Paper

Measuring the Benefits of Public Chargers and Improving Infrastructure Deployments Using Advanced Simulation Tools

2015-04-14
2015-01-1688
With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory developed BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles. The addition of high-resolution spatial-temporal travel histories enables BLAST-V to investigate user-defined infrastructure rollouts of publically accessible charging infrastructure, as well as quantify impacts on vehicle and station owners in terms of improved vehicle utility and station throughput. This paper presents simulation outputs from BLAST-V that quantify the utility improvements of multiple distinct rollouts of publically available Level 2 electric vehicle supply equipment (EVSE) in the Seattle, Washington, metropolitan area. Publically available data on existing Level 2 EVSE are also used as an input to BLAST-V. The resulting vehicle utility is compared to a number of mock rollout scenarios.
Technical Paper

Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe

2001-07-09
2001-01-2235
A technology demonstration propylene Loop Heat Pipe (LHP) has been tested extensively in support of the implementation of this two-phase thermal control technology on NASA’s Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) instrument. This cryogenic instrument is being developed at the Jet Propulsion Laboratory (JPL) for NASA. This paper reports on the transient characterization testing results showing low frequency temperature oscillations. Steady state performance and model correlation results can be found elsewhere. Results for transient startup and shutdown are also reported elsewhere. In space applications, when LHPs are used for thermal control, the power dissipation components are typically of large mass and may operate over a wide range of power dissipations; there is a concern that the LHP evaporator may see temperature oscillations at low powers and over some temperature range.
Technical Paper

Human Thermal Comfort Model and Manikin

2002-06-03
2002-01-1955
Current vehicle climate control systems are dramatically overpowered because they are designed to condition the cabin air mass in a specified period of time. A more effective and energy efficient objective is to directly achieve thermal comfort of the passengers. NREL is developing numerical and experimental tools to predict human thermal comfort in non-uniform transient thermal environments. These tools include a finite element model of human thermal physiology, a psychological model that predicts both local and global thermal comfort, and a high spatial resolution sweating thermal manikin for testing in actual vehicles.
Technical Paper

Development of the Third Generation JPL Electronic Nose for International Space Station Technology Demonstration

2007-07-09
2007-01-3149
The capabilities of the JPL Electronic Nose have been expanded to include characteristics required for a Technology Demonstration schedule on the International Space Station (ISS) in 2008-2009 [1,2]. Concurrently, to accommodate specific needs on ISS, the processes, tools and analyses which influence all aspects of development of the device have also been expanded. The Third Generation ENose developed for this program uses two types of sensor substrates, newly developed inorganic and organic sensor materials, redesigned electronics, onboard near real-time data analysis and power and data interfaces specifically for ISS. This paper will discuss the Third Generation ENose with a focus on detection of mercury in the parts-per-billion range.
Journal Article

Development of a Heavy-Duty Electric Vehicle Integration and Implementation (HEVII) Tool

2023-04-11
2023-01-0708
As demand for consumer electric vehicles (EVs) has drastically increased in recent years, manufacturers have been working to bring heavy-duty EVs to market to compete with Class 6-8 diesel-powered trucks. Many high-profile companies have committed to begin electrifying their fleet operations, but have yet to implement EVs at scale due to their limited range, long charging times, sparse charging infrastructure, and lack of data from in-use operation. Thus far, EVs have been disproportionately implemented by larger fleets with more resources. To aid fleet operators, it is imperative to develop tools to evaluate the electrification potential of heavy-duty fleets. However, commercially available tools, designed mostly for light-duty vehicles, are inadequate for making electrification recommendations tailored to a fleet of heavy-duty vehicles.
Technical Paper

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool

2011-04-12
2011-01-0656
In the United States, intercity long-haul trucks idle approximately 1,800 hrs per year primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel [1]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to this challenge through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. To help assess and improve idle reduction solutions, the CoolCalc software tool was developed.
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
X