Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design of a UV-A LED Photocatalytic Oxidation Reactor for Testing Spacecraft Potable Water Disinfection Technologies

2009-07-12
2009-01-2509
This report describes the design, assembly, and testing of a modified, re-circulating drip flow reactor to quantify the electrical, optical, and thermal performance of solid-state ultraviolet (UV) lighting and semi-conducting photocatalyst for potable water disinfection by advanced oxidation processes. The reactor test assembly incorporates high-output UV-A Light Emitting Diodes (LEDs) with active thermal control to reject heat and generate reactive oxygen species from immobilized titanium dioxide attached to borosilicate glass in the laminar flow stream. Compared with UV-excimer and UV-mercury arc lamps, the UV-A LED system demonstrated excellent thermal stability and good electrical and optical performance.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
X