Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fluid Behavior Under Microgravity Conditions Within Plant Nutrient Delivery Systems: Parabolic Flight Investigations

2003-07-07
2003-01-2483
We report here on a series of KC-135 parabolic flight studies investigating various aspects of water distribution in plant nutrient delivery systems being developed for spaceflight applications. Several types of porous tubes were evaluated. Under microgravity conditions, fluid was observed to creep up the end walls of polycarbonate substrate compartments. Capillary mats wrapped around the porous tubes wetted up in a uniform fashion regardless of the level of gravity to which they were being exposed, and they were found to eliminate the end-wall creep wetting-up pattern. Results from observations using 1-2 mm glass beads and 1-2 mm Turface substrates are presented. The Turface’s absorption of water effectively minimized fluid redistribution as the compartment alternated between microgravity and 1-1.8g conditions.
Technical Paper

Evaluation of Two Soil Moisture Sensor Designs for Spaceflight Applications

2002-07-15
2002-01-2385
A study was conducted evaluating the Temperature and Moisture Acquisition System (TMAS; Orbital Technologies, Madison, WI) and the Specific Heat Sensor (Thermal Logic, Pullman, WA) for root zone moisture level monitoring. Each design used a heat pulse and measured the transient temperature response to determine soil moisture changes. The sensors were placed in a polycarbonate compartment filled with oven-dried 1-2 mm Turface. Data was collected from the dry media, then the media was saturated with water and evaporation was monitored using the sensors and a digital balance. Generally, the TMAS sensors tended to over-estimate, while the Thermal Logic sensors under-estimated changes in soil moisture.
X