Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Technical Paper

Heavy Vehicle Propulsion Materials Program

1999-04-28
1999-01-2254
The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
X