Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Stress Analysis on the Single-Lap SPR- Adhesive Hybrid Joint

2018-04-03
2018-01-1445
Self-pierced rivet (SPR) and adhesive are two important joining technologies widely used in automobile industry, and they are often used together to form a hybrid joint. SPR and adhesives can often be used in close proximity in a component, leading to an interaction of the two joints. This interaction can influence the corrosion and noise, vibration and harshness (NVH) characteristics of the structure, as well as its strength and durability. In this paper, the stress distribution in an SPR-adhesive hybrid joint is evaluated by using the finite element method, and then compared with that in an adhesive joint. Results indicate that the stress concentrates at the edge of adhesive layer in hybrid joint and adhesive joint and around the rivet in an SPR joint. The effect of rivet is numerically investigated by either removing the rivet from the hybrid joint or changing the position of the rivet on the overlapping area.
Technical Paper

Investigation of Mechanical Behavior of Chopped Carbon Fiber Reinforced Sheet Molding Compound (SMC) Composites

2020-04-14
2020-01-1307
As an alternative lightweight material, chopped carbon fiber reinforced Sheet Molding Compound (SMC) composites, formed by compression molding, provide a new material for automotive applications. In the present study, the monotonic and fatigue behavior of chopped carbon fiber reinforced SMC is investigated. Tensile tests were conducted on coupons with three different gauge length, and size effect was observed on the fracture strength. Since the fiber bundle is randomly distributed in the SMC plaques, a digital image correlation (DIC) system was used to obtain the local modulus distribution along the gauge section for each coupon. It was found that there is a relationship between the local modulus distribution and the final fracture location under tensile loading. The fatigue behavior under tension-tension (R=0.1) and tension-compression (R=-1) has also been evaluated.
Technical Paper

A Crack Detection Method for Self-Piercing Riveting Button Images through Machine Learning

2020-04-14
2020-01-0221
Self-piercing rivet (SPR) joints are a key joining technology for lightweight materials, and they have been widely used in automobile manufacturing. Manual visual crack inspection of SPR joints could be time-consuming and relies on high-level training for engineers to distinguish features subjectively. This paper presents a novel machine learning-based crack detection method for SPR joint button images. Firstly, sub-images are cropped from the button images and preprocessed into three categories (i.e., cracks, edges and smooth regions) as training samples. Then, the Artificial Neural Network (ANN) is chosen as the classification algorithm for sub-images. In the training of ANN, three pattern descriptors are proposed as feature extractors of sub-images, and compared with validation samples. Lastly, a search algorithm is developed to extend the application of the learned model from sub-images into the original button images.
X