Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Seat Belt Restraint Evidence Generated by Unrestrained Occupant Interaction in a Rollover

2022-03-29
2022-01-0846
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows.
Journal Article

Fuel Tank Dynamic Strain Measurement Using Computer Vision Analysis

2020-04-14
2020-01-0924
Stress and strain measurement of high density polyethylene (HDPE) fuel tanks under dynamic loading is challenging. Motion tracking combined with computer vision was employed to evaluate the strain in an HDPE fuel tank being dynamically loaded with a crash pulse. Traditional testing methods such as strain gages are limited to the small strain elastic region and HDPE testing may exceed the range of the strain gage. In addition, strain gages are limited to a localized area and are not able to measure the deformation and strain across a discontinuity such as a pinch seam. Other methods such as shape tape may not have the response time needed for a dynamic event. Motion tracking data analysis was performed by tracking the motion of specified points on a fuel tank during a dynamic test. An HDPE fuel tank was mounted to a vehicle section and a sled test was performed using a Seattle sled to simulate a high deltaV crash. Multiple target markers were placed on the fuel tank.
Technical Paper

Fuel Filler System Check Valves - Dynamic Evaluation

2017-03-28
2017-01-1350
The fuel filler tube check valve (FTCV) is an integral part of a vehicle’s refueling system. The primary function of this valve is to control the refueling characteristics in a manner that enables the vehicle to be refueled efficiently and under wide ranging conditions, while limiting the amount of fuel or fuel vapor emissions being released into the environment. These valves accomplish this function by allowing the flow of gasoline to pass through the valve and into the tank during the refueling process with minimal restriction while limiting the reverse flow as the fuel tank approaches full. The location of these valves varies from vehicle to vehicle but are generally located within the fuel filler or fuel tank system. They have been engineered and developed to ensure the vehicle will meet customer and industry refueling requirements as well as refueling emissions mandates from the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB).
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
X