Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Model of IIHS Side Impact Torso Response Measures Using Transfer Function Equations

2005-04-11
2005-01-0291
Vehicle to vehicle crash compatibility is becoming an increasingly more important consideration during vehicle safety development due to the increasing numbers of SUVs and pickups in the vehicle fleet. According to the Insurance Institute for Highway Safety (IIHS), their side impact crash test represents what happens when a passenger vehicle is struck by a pickup truck or SUV. The IIHS side impact test measures 37 different response criteria using an instrumented 5th percentile female SID-IIs ATD (anthropomorphic test device) in driver and left rear passenger seats. These measures are grouped into head and neck, torso, and pelvis and left leg regions. This paper will describe the development of transfer function equation models to assess the performance of design countermeasures by comparing the response measures of the torso region of the body.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
Technical Paper

Body Concept Design for Pedestrian Head Impact

2003-03-03
2003-01-1300
In 1996, the European Enhanced Vehicle Safety Committee, Working Group 17 (EEVC WG17) proposed a set of impact procedures to evaluate the pedestrian injury risk of vehicle fronts. These procedures address three aspects of pedestrian protection – head impacts, lower limb impacts, and thigh impacts – through vehicle subsystem tests. The criteria assessed during these impact tests are affected by the design of most parts of the vehicle body front-end. One of the challenges to vehicle design introduced by these tests is the impact of an adult pedestrian headform to the top of the fender. The proposed acceptance level for Head Injury Criterion (HIC) is less than 1000 during impacts at 40 km/h. This paper uses the finite element (FE) method to predict the influence of proposed fender and shotgun design modifications aimed at meeting this target. In addition, the known issues with the implementation of these proposed changes are discussed.
X