Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Light Weight Structures - Structural Analysis for Weight Optimization and Joining Techniques of Dissimilar Materials

2016-04-05
2016-01-1394
Light weight structures give significant advantages to products in the Industrial sector. Component weight-saving plays a major role in improving the efficiency and performance of assembled systems. The introduction of lighter materials into products using dissimilar material joining techniques can create more weight savings and leads to lighter structures. Structural optimization is another method to optimize the material layout without affecting overall performance of the product. This paper discusses the methods to create lighter structures by the introduction of lighter materials in structures and structural optimization methods. Lighter materials are introduced in the structure using dissimilar material joining techniques. Joining processes such as thermal shrink-fit and mechanical press-fit are useful for metal to metal components. Similarly, adhesively bonded joints are useful for both metal and non-metal (plastics and composites) components.
Technical Paper

Finite Element Method Based Fatigue Analysis of a Gray Cast Iron Component

2013-04-08
2013-01-1205
Good understanding and accurate prediction of component fatigue strength is crucial in the development of modern engine. In this paper a detail analysis was conducted on an engine component made of gray cast iron with finite element method to evaluate the fatigue strength. This component has notches that cause local stress concentration. It is well known that fatigue behavior of a notch is not uniquely defined by the local maximum stress but depends on other factors determined by notch geometry and local stress distribution. The component fatigue strength was underestimated by only considering the stresses on the notch surface for fatigue life prediction. The critical distance approach was adopted to predict the fatigue behavior of this component. Good agreements are observed between predicted life by the critical distance method and actual field data.
Technical Paper

Fatigue Time-to-Failure Prediction Methodology for Glass (Fused Quartz) Material under Cyclic Loading

2016-04-05
2016-01-0388
In amorphous solids such as fused quartz, the failure mechanism under cyclic loading is very different when compared to metals where this failure is attributable to dislocation movement and eventual slip band activity. Standard mechanical fatigue prediction methodologies, S-N or ε-N based, which have been historically developed for metals are rendered inapplicable for this class of material. The fatigue strength of Fused Silica or Fused Quartz (SiO2) material is known to be highly dependent on the stressed area and the surface finish. Stable crack growth in Region II of the V-K curve (Crack growth rate vs Stress intensity factor) is dependent on the competing and transitional effects of temperature and humidity, along that specific section of the stress intensity factor abscissa. Fused glass (under harsh environment conditions) finds usage in Automotive, Marine and Aerospace applications, where stress and load (both static and cyclic) can be severe.
Technical Paper

Fatigue Analysis Methodology for Predicting Engine Valve Life

2003-03-03
2003-01-0726
Using FEM (Finite Element Method) and other analytical approaches, a systematic methodology was developed to predict an engine valve's fatigue life. In this study, a steel (SAE 21-2N) exhaust valve on an engine with a type 2 valve train configuration was used as a test case. Temperature and stress/strain responses of each major event phase of the engine cycle were analytically simulated. CFD models were developed to simulate the exhaust gas flow to generate boundary conditions for a thermal model of the valve. FEM simulations accounted for thermal loads, temperature dependent material properties, thermal stresses, closing impact stresses and combustion load stresses. An estimated fatigue life was calculated using Miner's rule of damage accumulation in conjunction with the Modified Goodman approach for fluctuating stresses. Predicted life results correlated very well with empirical tests.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

Development of Net Shape Fiber Reinforced Plenum for Electronic Limited Slip Differential

2015-04-14
2015-01-0710
Global vehicle emissions reduction initiatives have warranted the development and usage of new materials and processes not traditionally used in the automotive industry besides exclusive applications. To support this mandate, vehicle lightweighting via metal replacement and design optimization has come into sharp focus as a doubly rewarding effect; namely, a lighter vehicle system not only requires less road load power for motivation, but also allows for smaller, usually more efficient powertrain options, which tend to be more efficient still. The automotive industry has begun to embrace adapting composite materials that have typically been available only to the upper end of the market and specialty racing applications. The specific component detailed in this paper highlights the challenges and rewards for metal replacement with an injection molded, fiber reinforced plastic for usage in mass produced drivetrain systems, namely the Electronic Limited Slip Differential (eLSD).
X