Refine Your Search

Topic

Author

Search Results

Journal Article

Whirl of Crankshaft Rear End, Part1: an L6-Cylinder Diesel Engine

2017-06-05
2017-01-1810
As the issue of global warming has become more serious, needs for downsizing or weight saving of an engine has been getting stronger, and forces exerted on engine parts, especially force on a crankshaft, have been getting larger and larger. In addition, since a crankshaft is a heavy engine part, needs for saving weight have been getting stronger and stronger. Therefore, determining the mechanism of high stress generation in a crankshaft system is urgently needed. This paper describes the characteristics and mechanism of a severe bending stress caused by the whirl of crankshaft rear end of an inline 6-cylinder medium-duty diesel engine. The authors measured bending stress on the fillets of the crankshaft, and found severe levels of sharp peaks in the stress curves for the crankshaft rear. To figure out why the severe levels of sharp peaks appear, they analyzed and studied the measured data.
Technical Paper

Urban Driving Cycle Results of Retrofitted Diesel Oxidation Catalysts on Heavy Duty Vehicles: One Year Later

1997-02-24
970186
This updated paper presents chassis dynamometer emissions testing of various heavy duty vehicles with and without retrofitted diesel oxidation catalyst technology. Analysis is provided into both the vehicle emissions baselines and emissions with retrofitted catalyst technology over the New York Composite and Central Business District cycles. The vehicles studied include four urban buses, two school buses and four heavy duty trucks. Some of these vehicles in this study have been followed for up to two years. The paper will discuss in-use heavy duty vehicle emissions issues and the use of diesel oxidation catalyst technologies.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Understanding Soot Mediated Oil Thickening: Rotational Rheology Techniques to Determine Viscosity and Soot Structure in Peugeot XUD-11 BTE Drain Oils

2001-05-07
2001-01-1967
The Association des Constructeurs Européen d'Automobiles (ACEA) light duty diesel engine specifications requires a kinematic viscosity measurement technique for Peugeot XUD-11 BTE drain oils. This viscosity measurement is used to define the medium temperature dispersivity of soot in the drain oil.(1) This paper discusses the use of rotational rheology methods to measure the Newtonian character of XUD-11 drain oils. The calculation of the rate index using the Hershel Bulkley model indicates the level of non-Newtonian behavior of the drain oil and directly reflects the level of soot dispersion or agglomeration. This study shows that the more non-Newtonian the drain oil the greater the difference between kinematic and rotational viscosity measurements Oscillation (dynamic) rheological techniques are used to characterize build up of soot structure.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

Turbulence Measurement in Diesel Combustion by Optical Fiber Thermometer

1997-10-01
972915
In order to clarify the characteristics of turbulence in diesel combustion, fluctuations of pressure and temperature were measured in a DI diesel engine, and the root mean square value, the auto-correlation coefficient and the power spectrum density of the measured fluctuations were analyzed comparing between the cases with and without pilot injection. The following concluding remarks are obtained. (1) The frequency power spectrum of in-cylinder pressure history is decreased by pilot injection in two frequency ranges from 0.2 to 2.0 kHz and from 2 to 5 kHz. (2) Fluctuation of combustion pressure is dependent on the maximum rate of pressure rise, which is dependent on ignition delay. (3) The maximum RMS of soot temperature fluctuation in the diffusion combustion is dependent on the maximum RMS of pressure fluctuation in the initial combustion. (4) Fluctuation of temperature during diffusion combustion period has the characteristics of isotropic turbulence.
Technical Paper

Truck Transportation Management and Information Network

1990-10-01
901176
This paper offers a brief explanation of Isuzu Transport Auto Control (I-TAC), a system used to accurately collect and control information in-transit. I-TAC was developed as a means to meet needs for transportation by truck.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

The Isuzu P’UP - Fully Remodeled Small Pickup Truck

1981-11-01
811271
The P’UP has been on the markets worldwide since 1972, both in Japan and overseas, including for the U.S., in which case, with model designation as the Chevrolet LUV. In 1980, for the first time since its market introduction, it was fully remodelled with detail improvements reflected thereon in every aspect. This new model continues to be on the U.S. market as the Chevrolet LUV as it has been, but, beginning from spring of 1981, the similar model has been introduced to the market by the American Isuzu Motors Inc. (AIM) as the Isuzu P’UP. Taking this opportunity, a diesel version has been added to its model lineup. The diesel engine mounted on this version features its 20 to 30% better fuel efficiency over its gasoline counterpart. In the first half of this paper, the engineering concepts of its full remodelling and their onvehicle reflection will be introduced.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

The Development of CVT Fluids with Higher Friction Coefficients

2003-05-19
2003-01-1978
The development of new transmission designs continues to affect the vehicle market. Continuously variable transmissions (CVTs) remain one of the more recent designs that impact the vehicle market. A desire for high belt-pulley capacity has driven studies concentrating on metal-on-metal (M/M) friction as a function of the CVT fluid. This paper describes the statistical techniques used to optimize the fluid friction as a function of additive components in a bench-scale, three-element test rig.
Technical Paper

The Application of CAE in the Development of Air Suspension Beam

1997-11-17
973232
Every year the trucking industry demands lighter weight and lower cost truck components. But it is very difficult to achieve both these targets. This paper describes the example of a suspension system design which was conducted by computer simulation, so called CAE. The computer simulation by FEM was used completely to decide the detailed shape of each part. This paper also introduces a casting method to strengthen the aluminum alloy cast using high pressure during casting. By using this method, products have a precise metallographic structure. As a result, both the development cost and period were reduced by over the half the time required of the current system and lighter and strong parts were created.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Soot Related Viscosity Increase - A Comparison of the Mack T-11 Engine Test to Field Performance

2004-10-25
2004-01-3009
Soot related viscosity increase has been reported as a field issue in some diesel engines and this led to the development of the T-11 engine test, incorporated in the Mack EO-N Premium Plus 03 specification (014 GS 12037). This study compares T-11 laboratory engine tests and vehicle field tests and seeks to confirm the correlation between them. The findings are that the T-11 test provides an effective screening tool to investigate soot related viscosity increase, and the severity of the engine test limits gives a substantial margin of safety compared to the field. A complementary study was conducted in conjunction with this work that focuses on the successful application of electrochemical sensor technology to diagnose soot content and soot related viscosity increase. This will be the subject of a separate paper.
Technical Paper

Six-Cylinder-In-Line Turbo-Charged Diesel Engine Crankshaft Torsional Vibration Characteristics

2001-11-12
2001-01-2719
Engine crankshafts have been designed to avoid low-harmonic-order resonant torsional vibration in a commonly-used engine speed range, but the authors have found that, in some engines, especially turbo-charged engines, a significant degree of a low-harmonic-order exciting torque acts on the crankshaft. In these engines, the amplitude of non-resonant low-harmonic-order torsional vibration is almost as large as that of the resonant one. The authors conclude that the 3rd-order non-resonant torsional amplitude is not only significant but also characteristic of the turbo-charged engine in comparison with the naturally-aspirated engine, and recommend that crankshafts on turbo-charged diesel engines should be made stiffer than those on naturally-aspirated engines.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Results of North American Field Trials Using Diesel Filters with a Copper Additive for Regeneration

1994-03-01
940455
SAE Paper 930131 outlined initial work performed on a diesel particulate filter system using a copper additive for regeneration. Laboratory evaluations of soot oxidation, fuel stability, and emissions reductions were presented along with preliminary field data. Since then, a total of thirty-four buses have been included in the North American fleet trials. The buses are powered by different engines and engine configurations. Results of the field trial are presented along with problems encountered and their resolution.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
X