Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of the Generalized RNG Turbulence Model and Its Application to Flow in a HSDI Diesel Engine

2012-04-16
2012-01-0140
A generalized re-normalization group (RNG) turbulence model based on the local "dimensionality" of the flow field is proposed. In this modeling approach the model coefficients C₁, C₂, and C₃ are all constructed as functions of flow strain rate. In order to further validate the proposed turbulence model, the generalized RNG closure model was applied to model the backward facing step flow (a classic test case for turbulence models). The results indicated that the modeling of C₂ in the generalized RNG closure model is reasonable, and furthermore, the predictions of the generalized RNG model were in better agreement with experimental data than the standard RNG turbulence model. As a second step, the performance of the generalized RNG closure was investigated for a complex engine flow.
Technical Paper

Validation of an LES Multi Mode Combustion Model for Diesel Combustion

2010-04-12
2010-01-0361
Diesel engine combustion is simulated using Large Eddy Simulation (LES) with a multi-mode combustion (MMC) model. The MMC model is based on the combination of chemical kinetics, chemical equilibrium, and quasi-steady flamelet calculations in different local combustion regimes. The local combustion regime is identified by two combustion indices based on the local temperature and the extent of mixture homogeneity. The LES turbulence model uses the dynamic structure model (DSM) for sub-grid stresses. A new spray model in the LES context is used, and the Reynolds-averaged Navier-Stokes (RANS) based wall model is retained with the LES derived scales. These models are incorporated in the KIVA3V-ERC-Release 2 code for engine combustion simulations. A wide range of diesel engine operating conditions were chosen to validate the combustion model.
Technical Paper

Using Intake Valve Deposit Cleanup Testing as a Combustion Chamber Deposit Discriminator

1998-10-19
982714
Carefully controlled intake valve deposit (IVD) cleanup testing is found to be an effective method for differentiating the effect of the deposit control additives on combustion chamber deposits (CCD). The IVD buildup procedure produces a consistent initial level of CCD that the cleanup additive, the additive of interest, continues to build on until the end of the cleanup test. This “end of cleanup” CCD is found to be as repeatable and differentiable a measurement as tests run under the more common “keep clean” type operation. While IVD cleanup testing induces a mid-test disturbance in the form of the end of buildup measurement, it aligns well with two key CCD protocols in terms of the higher additive treat rates used and the extended total test length. In an analysis of results from IVD cleanup tests run using four different engine/vehicle procedures on seven different additives, several findings stood out.
Technical Paper

Update on Engine Combustion Research at Sandia National Laboratories

2001-05-14
2001-01-2060
The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Understanding Soot Mediated Oil Thickening: Rotational Rheology Techniques to Determine Viscosity and Soot Structure in Peugeot XUD-11 BTE Drain Oils

2001-05-07
2001-01-1967
The Association des Constructeurs Européen d'Automobiles (ACEA) light duty diesel engine specifications requires a kinematic viscosity measurement technique for Peugeot XUD-11 BTE drain oils. This viscosity measurement is used to define the medium temperature dispersivity of soot in the drain oil.(1) This paper discusses the use of rotational rheology methods to measure the Newtonian character of XUD-11 drain oils. The calculation of the rate index using the Hershel Bulkley model indicates the level of non-Newtonian behavior of the drain oil and directly reflects the level of soot dispersion or agglomeration. This study shows that the more non-Newtonian the drain oil the greater the difference between kinematic and rotational viscosity measurements Oscillation (dynamic) rheological techniques are used to characterize build up of soot structure.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Journal Article

Understanding Hydrocarbon Emissions to Improve the Performance of Catalyst-Heating Operation in a Medium-Duty Diesel Engine

2023-04-11
2023-01-0262
To cope with regulatory standards, minimizing tailpipe emissions with rapid catalyst light-off during cold-start is critical. This requires catalyst-heating operation with increased exhaust enthalpy, typically by using late post injections for retarded combustion and, therefore, increased exhaust temperature. However, retardability of post injection(s) is constrained by acceptable pollutant emissions such as unburned hydrocarbon (UHC). This study provides further insight into the mechanisms that control the formation of UHC under catalyst-heating operation in a medium-duty diesel engine, and based on the understanding, develops combustion strategies to simultaneously improve exhaust enthalpy and reduce harmful emissions. Experiments were performed with a full boiling-range diesel fuel (cetane number of 45) using an optimized five-injections strategy (2 pilots, 1 main, and 2 posts) as baseline condition.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

Two-Scale Command Shaping for Reducing NVH during Engine Shutdown

2020-04-14
2020-01-0411
Two-scale command shaping is a recently proposed feedforward control method aimed at mitigating undesirable vibrations in nonlinear systems. The TSCS strategy uses a scale separation to cancel oscillations arising from nonlinear behavior of the system, and command shaping of the remaining linear problem. One promising application of TSCS is in reducing engine restart and shutdown vibrations found in conventional and in hybrid electric vehicle powertrains equipped with start-stop features. The efficacy of the TSCS during internal combustion engine restart has been demonstrated theoretically and experimentally in the authors’ prior works. The present article presents simulation results and describes the verified experimental apparatus used to study TSCS as applied to the ICE shutdown case. The apparatus represents a typical HEV powertrain and consists of a 1.03 L three-cylinder diesel ICE coupled to a permanent magnet alternating current electric machine through a spur gear coupling.
Technical Paper

Two-Photon Laser-Induced Fluorescence of Nitric Oxide in a Diesel Engine

2006-04-03
2006-01-1201
In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.
Journal Article

Two-Color Diffused Back-Illumination Imaging as a Diagnostic for Time-Resolved Soot Measurements in Reacting Sprays

2013-10-14
2013-01-2548
Despite ongoing research efforts directed at reducing engine-out emissions, diesel engines are known to be one of the largest sources of atmospheric particulate matter (i.e., soot). Quantitative measurements are of primary importance to address soot production during the combustion process in the cylinder of diesel engines. This study presents the capabilities of an extinction-based diagnostic developed to quantitatively measure the soot volume fraction in n-dodecane sprays injected in a high-pressure, high-temperature vessel. Coupled with high-speed imaging, the technique yields time-resolved measurements of the soot field by relying on a diffused back-illumination scheme to improve extinction quantification in the midst of intense beam steering. The experiments performed in this work used two wavelengths, which, when combined with the Rayleigh-Debye-Gans theory, provide information about the optical and physical properties of soot.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

2017-10-08
2017-01-2234
Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
X