Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
X