Refine Your Search

Topic

Search Results

Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Test Based Methods for High Frequency Structureborne Noise

2001-04-30
2001-01-1523
NVH engineers typically are dealing with issues that relate to shake, harshness and low frequency noise and vibration concerns. However there is a greater importance being placed on dealing with high frequency structureborne noise problems which are related to gear meshing forces and drivetrain dynamics. This paper presents a case study of a high frequency structureborne noise problem. The objective of the paper is to show the application and effectiveness of using various testing based techniques such as Transfer Path, Running modes, and Mobility analysis along with acoustic excited operating deflection shapes for solving these problems in a timely and effective manner.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Role of Dynamic Stiffness in Effective Isolation

2019-06-05
2019-01-1495
In any machinery, avoiding noise and vibration completely is a difficult task due to the structural dynamic behaviors of components. To safeguard the operator, it is important to best isolate the operator station from NVH environment. Cabin isolation is an important aspect to minimize structure borne noise and tactile vibrations to be transferred into the cabin. Isolators are selected based on the isolation system inertial properties at mounting locations in the operating frequency range interested. The most important assumption to select isolators are that the active side and passive side of the isolators are nearly rigid so impedance mismatch is created for effective isolation. This paper describes the importance of dynamic stiffness of the structures on both the active and passive side for better NVH performance.
Technical Paper

Prediction and Validation of Cab Noise in Agricultural Equipment

2021-08-31
2021-01-1070
To improve overall customer experience, it is imperative to minimize the noise levels inside agricultural equipment cab. Up-front prediction of acoustic performance in product development is critical to implement the noise control strategies optimally. This paper discusses the methodology used for virtual modeling of a cab on agricultural equipment for prediction of interior noise. The Statistical Energy Analysis (SEA) approach is suitable to predict high frequency interior noise and sound quality parameters such as articulation index and loudness. The cab SEA model is developed using a commercial software. The structural and acoustic excitations are measured through physical testing in various operating conditions. The interior noise levels predicted by the virtual model are compared with the operator ear noise levels measured in the test unit. The resultant SPL spectrum from SEA correlates well with the test.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Technical Paper

Pass by Noise Analysis Method Extended for Mitigation Solution Development on Earth Moving Machinery

2021-08-31
2021-01-1071
Pass-by/exterior noise of earth moving machines (EMM) and forestry machines is becoming a focus at early product development stages. ISO 6395 (2) or EC/2000/14 (1) standards defines exterior noise test procedure for EMM. However, these standards do not provide insights for diagnosing any noise issues which may arise. The analysis challenges are posed by the moving machine and acoustic sources with respect to the stationary hemisphere target microphone on the ground and changing operating condition of sources as function of time. There is need to develop a seamless methodology to identify acoustic sources, quantify respective source strengths and rank partial contributions from each source to the total target microphone response in order to overcome the aforementioned challenges.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

2006-04-03
2006-01-0138
This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Obtaining Structure-Borne Input Power for a SEA Model of an Earthmoving Machine Cab

2011-05-17
2011-01-1732
Properly characterizing input forces is an important part of simulating structure-borne noise problems. The purpose of this work was to apply a known force reconstruction technique to an earthmoving machinery cab to obtain input functions for modeling purposes. The technique was performed on a cab under controlled laboratory conditions to gain confidence in the method prior to use on actual machines. Forces were measured directly using force transducers and compared to results from the force reconstruction technique. The measured forces and vibrations were used as input power to an SEA model with favorable results.
Technical Paper

Numerical Prediction and Verification of Noise Radiation Characteristics of Diesel Engine Block

2019-06-05
2019-01-1591
To assess the contribution of structure-borne noise from an engine, it is critical to characterize the dynamic and vibro-acoustic properties of the engine components and assembly. In this paper, a component level study of a three-cylinder diesel engine block is presented. Virtual analysis was done to predict the natural frequencies and mode shapes of an engine block in the first step. Then, these results were used to decide the optimum test locations and an experimental modal test was conducted on the engine block. The initial virtual model results for the natural frequencies and mode shapes were correlated with the results from test. Then, the virtual model was updated with the damping derived from experimental modal test to match the vibration frequency response functions. Further, the virtual model was used for prediction of vibro-acoustic transfer functions. The vibro-acoustic transfer functions were also obtained from test.
Technical Paper

Noise and Vibration Prediction and Validation for Off-Highway Vehicle Cab Using Hybrid FE-SEA Methodology

2019-06-05
2019-01-1479
Operator noise is an important aspect for noise and vibration of off-highway vehicles and a quieter cab is critical for the operator comfort. The noise level inside the cab is influenced by structural and acoustic transfer paths. In this paper, we used hybrid FE-SEA approach to consider both structural and acoustic transfer path as FEM and SEA methods individually face limitations in high and low frequencies respectively. A hybrid FE-SEA cab model was built to predict the structural and acoustic transfer functions. The analysis model was built with the systematic approach validated at each step with the laboratory test results. For the structural transfer function, structural excitations were applied at four cab mount locations and accelerations at various locations on the cab were validated. For the acoustic transfer function, the cab was excited with the volume velocity source inside the cab and sound power output of various panels were calculated and compared to the test results.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Identification and Reduction of Booming Noise on a Motor Grader

2011-05-17
2011-01-1729
NVH is gaining importance in the quality perception of off-highway machines' performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in a motor grader when it is used under certain operating conditions that cause low frequency excitations to the machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, both simulation and testing techniques were leveraged to reduce the booming noise of a motor grader. Simultaneous structural/acoustics simulations and experimental modal tests were performed to evaluate this phenomenon. The simulation models were validated using test results and then used to evaluate solutions to this noise problem. Further field tests confirmed the validity of these recommended solutions.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Technical Paper

Errors in the Driveline System Balancing Process

2001-04-30
2001-01-1504
Single-plane balancing is a very well-understood process, whereby an imbalance vector is determined and then opposed by a similar vector of equal magnitude but 180° out of phase. This is used in many situations to improve machine performance, vibration, noise etc. However, there is inherent in this process a sensitivity to errors of measurement and correction, since a large imbalance vector and the equally large correction vector must be of exactly equal magnitude and exactly 180° apart for perfect balance. This paper examines the effect of errors in measurement of the initial imbalance and correction of it on the residual balance of automotive drivelines. In particular, it examines the effects of the errors present in a system whereby a system balance correction is made, on a driveline assembly, at discrete points around a given plane (at bolt locations). Errors occur in measurement of vibration, in calculating correction masses and in applying those correction masses.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Empirical Noise Model for Power Train Noise in a Passenger Vehicle

1999-05-17
1999-01-1757
Power train noise reaches the interior through structureborne paths and through airborne transmission of engine casing noise. To determine transfer functions from vibration to interior noise a shaker was attached at the engine attachment points, with the engine removed. A simple engine noise simulator, with loudspeaker cones on its faces, was placed in the engine compartment to measure airborne transfer functions to interior noise. Empirical noise estimates, based on the incoherent sum of contributions for individual source terms times the appropriate transfer function, compared remarkably well with measured levels obtained from dynomometer tests. Airborne transmission dominates above 1.5kHz. At lower frequencies engine casing radiation and vibration contributions are comparable.
Technical Paper

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

2005-04-11
2005-01-0637
As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.
X