Refine Your Search

Topic

Author

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

The Development of a Production Qualified Catalytic Converter

1993-03-01
930133
Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Testing of Welded and Machined A36 Steel T-Joint Configuration Specimens

2019-04-02
2019-01-0535
For this latest SAE Fatigue Design and Evaluation project, fatigue tests were run by loading, in bending, both welded and machined T-Joint specimens that have the same geometry. The test rig setup consisted of a horizontally mounted actuator, with pinned joints at both ends, where the load is applied to the top of the vertical leg of the “upside down T” of a T-Joint specimen, while the horizontal legs of the “upside down T” were clamped to the bedplate. Specimens were tested until failure or until the specimen was unable to carry the commanded load. They were cycled under constant amplitude (at several load levels and R ratios), block cycle, and variable amplitude loadings. Welded and machined T-Joint specimens of the same geometry were included in the test plan such that fatigue life predictions could be compared to test lives for each case. Those comparisons would demonstrate the methodology’s relative predictive ability to manage welds, residual stress, etc...
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Technical Paper

Role of Dynamic Stiffness in Effective Isolation

2019-06-05
2019-01-1495
In any machinery, avoiding noise and vibration completely is a difficult task due to the structural dynamic behaviors of components. To safeguard the operator, it is important to best isolate the operator station from NVH environment. Cabin isolation is an important aspect to minimize structure borne noise and tactile vibrations to be transferred into the cabin. Isolators are selected based on the isolation system inertial properties at mounting locations in the operating frequency range interested. The most important assumption to select isolators are that the active side and passive side of the isolators are nearly rigid so impedance mismatch is created for effective isolation. This paper describes the importance of dynamic stiffness of the structures on both the active and passive side for better NVH performance.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Prediction and Validation of Cab Noise in Agricultural Equipment

2021-08-31
2021-01-1070
To improve overall customer experience, it is imperative to minimize the noise levels inside agricultural equipment cab. Up-front prediction of acoustic performance in product development is critical to implement the noise control strategies optimally. This paper discusses the methodology used for virtual modeling of a cab on agricultural equipment for prediction of interior noise. The Statistical Energy Analysis (SEA) approach is suitable to predict high frequency interior noise and sound quality parameters such as articulation index and loudness. The cab SEA model is developed using a commercial software. The structural and acoustic excitations are measured through physical testing in various operating conditions. The interior noise levels predicted by the virtual model are compared with the operator ear noise levels measured in the test unit. The resultant SPL spectrum from SEA correlates well with the test.
Technical Paper

Prediction and Measurement of Microstructure and Residual Stresses due to Electron Beam Welding Process

1999-04-14
1999-01-1872
Electron beam (EB) welding process is characterized by an extremely high power density that is capable of producing weld seams which are considerably deeper than width. Unlike other welding process, heat of EB welding is provided by the kinetic energy of electrons. This paper presents a computational model for the numerical prediction of microstructure and residual stress resulting from EB welding process. Energy input is modeled as a step function within the fusion zone. The predicted values from finite element simulation of the EB welding process agree well with the experimentally measured values. The present model is used to study an axial weld failure problem.
Technical Paper

Payload Measurement System on Off-Highway Trucks for Mine Applications

1987-11-08
871200
The need to accurately measure and record the payload of large off-highway mining trucks was identified by The Broken Hill Proprietary Co. Ltd. (BHP). In response. Caterpillar designed and developed a system to fufill that need. The payload carried by mine haul trucks has a strong influence on production rates and costs. The system developed should enable payloads to be much better controlled than has been previously possible. The system also provides a number of mine management features. The development of the system is described from the concept stage to the production stage. Final production capabilities of the microprocessor based system are described. Payload measurement capabilities, diagnostic capabilities, data storage, and data extraction methods are discussed.
Technical Paper

Optimization of a Hydraulic Valve Design Using CFD Analysis

2005-11-01
2005-01-3633
The design of a pressure compensated hydraulic valve is optimized using CFD analysis. The valve is used in a hydraulic system to control implement movement. High flow rates through the valve resulted in unacceptably high pressure drops, leading to an effort to optimize the valve design. Redesign of the valve had to be achieved under the constraint of minimal manufacturing cost. The flow path of hydraulic oil through the valve, the spool design, and various components of the valve that caused the high pressure drops were targeted in this analysis. A commercially available CFD package was used for the 3D analysis. The hydraulic oil flow was assumed to be turbulent, isothermal and incompressible. The steady-state results were validated by comparison with experimental data.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
X