Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

ROAD ANTIKNOCK PERFORMANCE AND THE BOILING RANGE OF HYDROCARBON TYPES

1958-01-01
580394
Two gasolines may have the same Research octane number, the same Motor octane number, and the same over-all hydrocarbon composition yet differ significantly in road antiknock performance. This paper concludes that such variation can be related to the placement of hydrocarbon types in the boiling range of the gasolines. Specifically, studies show that the low-boiling olefins provided better road performance than did the high-boiling olefins. Also, low-boiling aromatics gave better road ratings than the high-boiling aromatics. The magnitude of these effects varied with vehicle engine speed. For this study, twenty fuels of nominal 100 Research octane number were designed on a statistical basis. Realistic gasoline components were used. Comprehensive laboratory inspections of the fuels and fractions included more than 700 laboratory antiknock ratings, 400 hydrocarbon type analyses, and complete volatility data.
Technical Paper

ARE OCTANE NUMBERS AND HYDROCARBON TYPE ENOUGH?

1960-01-01
600140
This paper presents the results of an investigation cooperatively undertaken by Esso Research and Engineering Company and Ethyl Corporation to determine whether the hydrocarbon-type effect observed in road antiknock studies of gasolines is independent of other fuel properties over and above laboratory octane numbers. For this study, 51 finished gasolines were carefully blended from 57 base stock components to provide controlled levels of those major fuel properties which affect road performance. The controlled properties were Research octane number, sensitivity (RON minus MON), ratio of aromatics to olefins, tetraethyllead content, octane-number distribution in the fuel's boiling range, boiling-range location of the unsaturated hydrocarbons, and sulfur content. A unique feature of the blending scheme was the formulation of blend pairs, in which all but one of the major fuel properties were essentially equal.
X