Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Transmission Modulating Valve Simulation and Simulation Verification

1990-04-01
900917
This paper presents a response to the question: Simulation - mathematical manipulation or useful design tool? A mathematical model of a modulating valve in a transmission control system was developed to predict clutch pressure modulation characteristics. The transmission control system was previously reported in SAE Paper 850783 - “Electronic/Hydraulic Transmission Control System for Off-Highway Vehicles”. The comparison of simulation predictions with test data illustrates the effectiveness of simulation as a design tool. THE EVOLUTION OF COMPUTER hardware and simulation software has resulted in increased interest and usage of simulation for dynamic analysis of hydraulic systems. Most commercially available software is relatively easy to learn to use. The application of such software and the modeling techniques involved require a longer learning curve.
Technical Paper

Rapid Prototyping of Control Strategies for Embedded Systems

1995-04-01
951197
As both the number and complexity of electronic control system applications on earthmoving equipment and on-highway trucks increase, so does the effort associated with developing and maintaining control strategies implemented in embedded systems. A new tool was recently introduced by Sigma Technology of Ann Arbor, Michigan, that provides the capability to perform rapid prototyping of production embedded systems. The rapid prototyping process includes system modeling, control algorithm synthesis, simulation analysis, source code generation and vehicle implementation. The results of incorporating this tool in the control system design process include improved control performance, improved system reliability/robustness, and significantly reduced development/maintenance costs.
Technical Paper

Predictive Breakdown Modeling for Spark Plug Design

2020-04-14
2020-01-0781
Spark-plug lifetime is limited by the ability of the ignition coil to generate a spark channel. Electrode erosion during operation causes the geometry to deform and the maximum voltage required to form a spark increases until the ignition coil is no longer able to form the spark channel. Numerical models that can analyze the breakdown of the plasma in a spark plug have typically been limited to vacuum electrical field simulations and full-fidelity plasma models. In the present work, we present a fast, predictive breakdown model that blends the speed and computational efficiency of electric field model and incorporates the essential physics of the breakdown event without having to pay the cost of solving the full set of plasma governing equations.
Technical Paper

Linkage and Structural Optimization of an Earth Moving Machine

2010-04-12
2010-01-0496
Faced with competitive environments, pressure to lower development costs and aggressive timelines engineers are not only increasingly adopting numerical simulation techniques but are also embracing design optimization schemes to augment their efforts. These techniques not only provide more understanding of the trade-offs but are also capable of proactively guiding the decision making process. However, design optimization and exploration tools have struggled to find complete acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing swift decision making processes. In this paper we demonstrate how the type of setup and algorithmic choice can have an influence and make optimization more lucrative in a new product development atmosphere. We also present some results from a design exploration activity, involving linkage and structural development, of an earth moving machine application.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Genetic Algorithm based Automated Calibration Tool for Numerical Selective Catalytic Reduction (SCR) Models

2009-04-20
2009-01-1265
An automated process was developed for the calibration of numerical aftertreatment models. The chemical kinetic mechanism examined in this case was part of a simplified SCR model. The process adopted for calibrating the SCR model was based on a micro-population multi-objective genetic algorithm. The algorithm developed was used to calibrate the SCR model using data derived from another, more detailed model to ensure that the evaluation focused only on the effectiveness of the calibration process and was not affected by issues of experimental inaccuracies or details of the model chemistry involved.
X