Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Using Pilot Diesel Injection in a Natural Gas Fueled HCCI Engine

2002-10-21
2002-01-2866
Previous research has shown that the homogeneous charge compression ignition (HCCI) combustion concept holds promise for reducing pollutants (i.e. NOx, soot) while maintaining high thermal efficiency. However, it can be difficult to control the operation of the HCCI engines even under steady state running conditions. Power density may also be limited if high inlet air temperatures are used for achieving ignition. A methodology using a small pilot quantity of diesel fuel injected during the compression stroke to improve the power density and operation control is considered in this paper. Multidimensional computations were carried out for an HCCI engine based on a CAT3401 engine. The computations show that the required initial temperature for ignition is reduced by about 70 K for the cases of the diesel pilot charge and a 25∼35% percent increase in power density was found for those cases without adversely impacting the NOx emissions.
Technical Paper

Update on Engine Combustion Research at Sandia National Laboratories

2001-05-14
2001-01-2060
The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Journal Article

The Future Adoption and Benefit of Electric Vehicles: A Parametric Assessment

2013-04-08
2013-01-0502
We present a parametric analysis of electric vehicle (EV) adoption rates and the corresponding contribution to greenhouse gas (GHG) reduction in the US light-duty vehicle (LDV) fleet through 2050. The analysis is performed with a system dynamics based model of the supply-demand interactions among the fleet, its fuels, and the corresponding primary energy sources. The differentiating feature of the model is the ability to conduct global sensitivity and parametric trade-space analyses. We find that many factors impact the adoption rates of EVs. These include, in particular, policy initiatives that encourage consumers to consider lifetime ownership costs, the price of oil, battery performance, as well as the pace of technological development for all powertrains (conventional internal combustion engines included). Widespread EV adoption can have noticeable impact on petroleum consumption and GHG emissions by the LDV fleet.
Journal Article

The Feasibility of Using Raw Liquids from Fast Pyrolysis of Woody Biomass as Fuels for Compression-Ignition Engines: A Literature Review

2013-04-08
2013-01-1691
This study summarizes the peer-reviewed literature regarding the use of raw pyrolysis liquids (PLs) created from woody biomass as fuels for compression-ignition (CI) engines. First, a brief overview is presented of fast pyrolysis and the potential advantages of PLs as fuels for CI engines. Second, a discussion of the general composition and properties of PLs relative to conventional, petroleum-derived diesel fuels is provided, with emphasis on the differences that are most likely to affect PL performance in CI-engine applications. Next, a synopsis is given of the peer-reviewed literature describing experimental studies of CI engines operated using neat PLs and PLs combined in various ways with other fuels. This literature conclusively indicates that raw PLs and PL blends cannot be used as “drop-in replacements” for diesel fuel in CI engines, which is reflected in part by none of the cited studies reporting successful operation on PL fuels for more than twelve consecutive hours.
Technical Paper

System Efficiency Issues for Natural Gas Fueled HCCI Engines in Heavy-Duty Stationary Applications

2002-03-04
2002-01-0417
Homogeneous Charge Compression Ignition (HCCI) has been proposed for natural gas engines in heavy duty stationary power generation applications. A number of researchers have demonstrated, through simulation and experiment, the feasibility of obtaining high gross indicated thermal efficiencies and very low NOx emissions at reasonable load levels. With a goal of eventual commercialization of these engines, this paper sets forth some of the primary challenges in obtaining high brake thermal efficiency from production feasible engines. Experimental results, in conjunction with simulation and analysis, are used to compare HCCI operation with traditional lean burn spark ignition performance. Current HCCI technology is characterized by low power density, very dilute mixtures, and low combustion efficiency. The quantitative adverse effect of each of these traits is demonstrated with respect to the brake thermal efficiency that can be expected in real world applications.
Technical Paper

Sustainability of Future Shipping Fuels: Well-to-Wake Environmental and Techno-Economic Analysis of Ammonia and Methanol

2023-08-28
2023-24-0093
The transportation industry has been scrutinized for its contribution towards the global greenhouse gas emissions over the years. While the automotive sector has been regulated by strict emission legislation globally, the emissions from marine transportation have been largely neglected. However, during the past decade, the international maritime organization focused on ways to lower the emission intensity of the marine sector by introducing several legislations. This sets limits on the emissions of different oxides of carbon, nitrogen and sulphur, which are emitted in large amounts from heavy fuel oil (HFO) combustion (the primary fuel for the marine sector). A 40% and 70% reduction per transport work compared to the levels of 2008 is set as target for CO2 emission for 2030 and 2050, respectively. To meet these targets, commonly, methanol, as a low-carbon fuel, and ammonia, as a zero-carbon fuel, are considered.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Journal Article

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-03-28
2017-01-0662
Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
Technical Paper

Preliminary Design of a Bio-Diesel Plug-in Hybrid Electric Vehicle as part of EcoCAR 2: Plugging-in to The Future

2012-09-10
2012-01-1770
With a growing need for a more efficient consumer based automotive platform, Embry-Riddle Aeronautical University (ERAU) chose to redesign the 2013 Chevrolet Malibu as a Plug-in Hybrid Electric Vehicle(PHEV). A Series architecture was chosen for its low energy consumption and high consumer acceptability when compared to the Series/Parallel-through-the-road and the Pre-Transmission designs. A fuel selection process was also completed and B20 Biodiesel was selected as the primary fuel due to lower GHG (Greenhouse Gases) emissions and Embry-Riddle's ability to produce biodiesel onsite using the cafeteria's discarded vegetable oil.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation

2001-03-05
2001-01-1203
Piston-wetting effects are investigated in an optical direct-injection spark-ignition (DISI) engine. Fuel spray impingement on the piston leads to the formation of fuel films, which are visualized with a laser-induced fluorescence (LIF) imaging technique. Oxygen quenching is found to reduce the fluorescence yield from liquid gasoline. Fuel films that exist during combustion of the premixed charge ignite to create piston-top pool fires. These fires are characterized using direct flame imaging. Soot produced by the pool fires is imaged using laser elastic scattering and is found to persist throughout the exhaust stroke, implying that piston-top pool fires are a likely source of engine-out particulate emissions for DISI engines.
Journal Article

PIV and PLIF to Evaluate Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine

2008-04-14
2008-01-1034
In an optically accessible single-cylinder engine fueled with hydrogen, acetone planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) are used to evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near-homogeneous mixture for PLIF calibration experiments and to establish a baseline comparison for post-IVC injection. Calibration experiments and a temperature correction allow conversion of the acetone fluorescence signal to equivalence ratio. For post-IVC injection with start of injection (SOI) coincident with IVC, PLIF results are similar to pre-IVC injection. With retard of SOI from IVC, mixture inhomogeneities increase monotonically, with high hydrogen concentration spatially located near the injector and within a smaller volume.
Technical Paper

Overview of Engine Combustion Research at Sandia National Laboratories

1999-04-27
1999-01-2246
The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
X