Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Technical Paper

Real Fuel Effects on Low Speed Pre-Ignition

2018-04-03
2018-01-1456
To better understand real fuel effects on LSPI, a matrix was developed to vary certain chemical and physical properties of gasoline. The primary focus of the study was the impact of paraffinic, olefinic, and aromatic components upon LSPI. Secondary goals of this testing were to study the impact of ethanol content and fuel volatility as defined by the T90 temperature. The LSPI rate increased with ethanol content but was insensitive to olefin content. Additionally, increased aromatic content uniformly led to increased LSPI rates. For all blends, lower T90 temperatures resulted in decreased LSPI activity. The correlation between fuel octane (as RON or MON) suggests that octane itself does not play a role; however, the sensitivity of the fuel (RON-MON) does have some correlation with LSPI. Finally, the results of this analysis show that there is no correlation between the laminar flame speed of a fuel and the LSPI rate.
Technical Paper

Numerical Study of Dual Fuel Methanol/Diesel Combustion under Engine-like Condition

2023-09-29
2023-32-0121
Alternative fuels such as methanol can significantly reduce greenhouse gas (GHG) emissions when used in internal combustion engines (ICEs). This study characterized the combustion of methanol, methanol/diesel, and methanol/renewable diesel numerically. Numerical findings were also compared with engine experiments using a single-cylinder engine (SCE). The engine was operated under a dual-fuel combustion mode: methanol was fumigated at the intake port, and diesel was injected inside the cylinder. The characteristic of ignition delay trend as methanol concentration increased is being described at low temperature (low engine load) and high temperature (high engine load) conditions.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

2013-10-14
2013-01-2699
Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.
Technical Paper

Engine and Emissions Performance of Renewable Diesel in a Heavy-Duty Diesel Engine: A Single-cylinder Engine Experiment

2023-04-11
2023-01-0273
As an alternative fuel, renewable diesel (RD) could improve the performance of conventional internal combustion engines (ICE) because of its difference in fuel properties. With almost no aromatic content in the fuel, RD produces less soot emissions than diesel. The higher cetane number (CN) of RD also promotes ignition of the fuel, which is critical, especially under low load, and low reactivity conditions. This study tested RD fuel in a heavy-duty single-cylinder engine (SCE) under compression-ignition (CI) operation. Test condition includes low and high load points with change in exhaust gas recirculation (EGR) and start of injection (SOI). Measurements and analysis are provided to study combustion and emissions, including particulate matters (PM) mass and particle number (PN). It was found that while the combustion of RD and diesel are very similar, PM and PN emissions of RD were reduced substantially compared to diesel.
Technical Paper

Comparison on Combustion and Emissions Performance of Biodiesel and Diesel in a Heavy-duty Diesel Engine: NOX, Particulate Matter, and Particle Size Distribution

2023-09-29
2023-32-0100
Low carbon emissions policies for the transportation sector have recently driven more interest in using low net-carbon fuels, including biodiesel. An internal combustion engine (ICE) can operate effectively using biodiesel while achieving lower engine-out emissions, such as soot, mostly thanks to oxygenate content in biodiesel. This study selected a heavy-duty (HD) single-cylinder engine (SCE) platform to test biodiesel fuel blends with 20% and 100% biodiesel content by volume, referred to as B20, and B100. Test conditions include a parametric study of exhaust gas recirculating (EGR), and the start of injection (SOI) performed at low and high engine load operating points. In-cylinder pressure and engine-out emissions (NOX and soot) measurements were collected to compare diesel and biodiesel fuels.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Achieving Fast Catalyst Light-Off from a Heavy-Duty Stoichiometric Natural Gas Engine Capable of 0.02 g/bhp-hr NOX Emissions

2018-04-03
2018-01-1136
Recently conducted work has been funded by the California Air Resources Board (CARB) to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions for heavy-duty on-road engines. In addition to NOX emissions, greenhouse gas (GHG), CO2 and methane emissions regulations from heavy-duty engines are also becoming more stringent. To achieve low cold-start NOX and methane emissions, the exhaust aftertreatment must be brought up to temperature quickly while keeping proper air-fuel ratio control; however, a balance between catalyst light-off and fuel penalty must be addressed to meet future CO2 emissions regulations. This paper details the work executed to improve catalyst light-off for a natural gas engine with a close-coupled and an underfloor three-way-catalyst while meeting an FTP NOX emission target of 0.02 g/bhp-hr and minimizing any fuel penalty.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
X