Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Journal Article

Visual, Thermodynamic, and Electrochemical Analysis of Condensate in a Stoichiometric Spark-Ignited EGR Engine

2018-04-03
2018-01-1406
The objectives of this project were to investigate the corrosivity of condensate in a stoichiometric spark-ignited (SI) engine when running exhaust gas recirculation (EGR) and to determine the effects of sulfur-in-fuel on corrosion. A 2.0 L turbocharged direct-injected SI engine was operated with low-pressure EGR for this study. The engine was instrumented for visual, thermodynamic, and electrochemical analyses to determine the potential for corrosion at locations where condensation was deemed likely in a low-pressure loop EGR (LPL-EGR) engine. The electrochemical analysis was performed using multi-electrode array (MEA) corrosion probes. Condensate was also collected and analyzed. These analyses were performed downstream of both the charge air cooler (CAC) and the EGR cooler. It was found that while conditions existed for sulfuric acid to form with high-sulfur fuel, no sulfuric acid was detected by any of the measurement methods.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Using Advanced Emission Control Systems to Demonstrate LEV II ULEV on Light-Duty Gasoline Vehicles

1999-03-01
1999-01-0774
A program to demonstrate the performance of advanced emission control systems in light of the California LEV II light-duty vehicle standards and the EPA's consideration of Tier II emission standards was conducted. Two passenger cars and one light-duty pick-up truck were selected for testing, modification, and emission system performance tuning. All vehicles were 1997 Federal Tier I compliant. The advanced emission control technologies evaluated in this program included advanced three-way catalysts, high cell density substrates, and advanced thermally insulated exhaust components. Using these engine-aged advanced emission control technologies and modified stock engine control strategies (control modifications were made using an ERIC computer intercept/control system), each of the three test vehicles demonstrated FTP emission levels below the proposed California LEV II 193,000 km (120,000 mile) ULEV levels.
Journal Article

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

The Turbo Trac Traction Drive CVT

2004-08-23
2004-40-0038
A unique and attractive variator mechanism has been developed by Turbo Trac, Inc. and Southwest Research Institute (SwRI) for initial use in a heavy duty diesel truck application. High efficiency levels have been predicted with analytical models and confirmed with actual test data. Further, this variator incorporates a very stable and simple control system and has extremely high torque capacity. The prototype of the variator mechanism has also been configured with a modified Allison 650 series transmission for use as a series application in a Peterbilt truck, the final configuration will be a split power design. The setup includes a preliminary control system that allows for highway driving. It is emphasized, however, that Allison did not contribute to this design or any of the content of this paper.
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Journal Article

The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior

2017-03-28
2017-01-0685
The impact of additive and oil chemistry on low speed pre-ignition (LSPI) was evaluated. An additive metals matrix varied the levels of zinc dialkyldithiophosphate (ZDDP), calcium sulfonate, and molybdenum within the range of commercially available engine lubricants. A separate test matrix varied the detergent chemistry (calcium vs. magnesium), lubricant volatility, and base stock chemistry. All lubricants were evaluated on a LSPI test cycle developed by Southwest Research Institute within its Pre-Ignition Prevention Program (P3) using a GM LHU 2.0 L turbocharged GDI engine. It was observed that increasing the concentration of calcium leads to an increase in the LSPI rate. At low calcium levels, near-zero LSPI rates were observed. The addition of zinc and molybdenum additives had a negative effect on the LSPI rate; however, this was only seen at higher calcium concentrations.
Technical Paper

The Effect of Environmental Aging on Intumescent Mat Material Durability at Low Temperatures

2002-03-04
2002-01-1099
Mat material durability data in the form of fragility curves were generated in a critical temperature region for three intumescent mat materials considered for low temperature converter applications. The mat materials were tested in a tourniquet wrap converter configuration employing a cylindrical ceramic substrate. Prior to developing durability data for these mat materials, the test items were subjected to various environmental thermal and/or vibration aging conditions. Mat material fragility data were generated in terms of the dynamic force required to impose prescribed differential motion between the can and substrate, thereby, subjecting the mat material to a dynamic shearing like that expected during resonant excitation. As expected, it was found that the mat material capacity to resist shearing deformation decreased when the test samples were subjected to 36 hours of low temperature thermal cyclic aging.
Technical Paper

The Development of a Production Qualified Catalytic Converter

1993-03-01
930133
Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Technical Paper

The Development of Techniques to Measure Vehicle Spray on Wet Roads

1974-02-01
740526
Several techniques have been developed to measure the relative amount of splash and spray produced by vehicles when driven on wet roads at highway speeds under controlled conditions. This paper discusses considerations in the development of measurement techniques such as those utilizing photographs, a photometer, densitometer, spraymeter, and spray collector. The development of each technique is described. Some test data utilizing the photometer and densitometer techniques are presented in a comparison of two different trucks run on two different road surfaces with new and worn tires, fully loaded and unloaded, and under light and heavy road moisture conditions.
Technical Paper

The Detroit Diesel DELTA Engine - Recent Technological Achievements

2001-05-14
2001-01-2062
The Detroit Diesel Corporation (DDC) DELTA engine has been specifically designed for the North American market. The advanced engine technologies being pursued for this engine enables its applications to the light truck/SUV vehicles for personal transportation as well as for the light commercial use, such as urban delivery vans. This paper reports on the progress attained so far in engine development. The next stage is currently under way resulting in Generation 1.0 DELTA engine technology. The results of various technology assessments on Generation 0.X hardware are reported. Further, the Generation 1.0 design and its potential will be briefly presented. It is concluded that the DELTA engine technology, including breakthrough advancements, is viable for practical applications to meet future light-duty and heavy-duty emissions with potentially attractive commercial features.
Technical Paper

The 1989 Formula SAE Student Design Competition

1990-02-01
900840
Forty-five cars were entered from 37 universities across the U.S. and Canada in the ninth annual Formula SAE Student Design Competition held on May 25, 26 and 27 at the University of Texas at San Antonio (UTSA). Thirty-six cars from 31 schools actually competed, but only 22 cars finished. The event included many firsts in Formula SAE. The SAE South Texas Section set a precedent by co-hosting the competition with the UTSA. The GM Sunraycer display and demonstration exhibited high technology and corporate support of Formula SAE. Total award funds (from various sponsors) exceeded those of previous events. New awards were given by new sponsors in 1989.
Technical Paper

Technical Approach to Increasing Fuel Economy Test Precision with Light Duty Vehicles on a Chassis Dynamometer

2016-04-05
2016-01-0907
In 2012, NHTSA and EPA extended Corporate Average Fuel Economy (CAFE) standards for light duty vehicles through the 2025 model year. The new standards require passenger cars to achieve an average of five percent annual improvement in fuel economy and light trucks to achieve three percent annual improvement. This regulatory requirement to improve fuel economy is driving research and development into fuel-saving technologies. A large portion of the current research is focused on incremental improvements in fuel economy through technologies such as new lubricant formulations. While these technologies typically yield less than two percent improvement, the gains are extremely significant and will play an increasing role in the overall effort to improve fuel economy. The ability to measure small, but statistically significant, changes in vehicle fuel economy is vital to the development of new technologies.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
X