Refine Your Search

Author

Search Results

Viewing 1 to 14 of 14
Technical Paper

Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context

2004-06-08
2004-01-1924
A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of automotive fuels and powertrains. The study gives an assessment of the energy consumption and greenhouse gas emissions for each pathway. It also considers macroeconomic costs and the market potential of alternative fuels.
Technical Paper

Two-Stroke Engine Cleanliness via a Fuel Additive

2016-11-08
2016-32-0048
Two-stroke engine keep-clean data is presented to demonstrate the deposit removal capabilities of a premium fuel additive. In this testing, the fuel additive was added as a top-treatment to a 50:1 blended fuel-oil mixture. Engine testing was conducted on an EchoTM SRM-265 (25.4 cc) string trimmer run under a standardized test cycle. Test measurements included piston deposits, ring deposits, and exhaust port blockage. In addition, a more complete data set was analyzed and several variables were investigated including: different base gasoline fuels, ethanol level (E0 and E10), additive dose (none, low, and high), and fuel stabilizer dose (none and high). Post-test inspection of engine parts using fuel additives showed a high level of clean surfaces, which maintained the engine at its original performance.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Fuel Effects on Regulated Emissions from Modern Gasoline Vehicles

2004-06-08
2004-01-1886
The influence of gasoline quality on exhaust emissions has been evaluated using four modern European gasoline cars with advanced features designed to improve fuel economy and CO2 emissions, including stoichiometric direct injection, lean direct injection and MPI with variable valve actuation. Fuel effects studied included sulphur content, evaluated over a range from 4 to 148 mg/kg, and other gasoline properties, including aromatics content, olefins content, volatility and final boiling point (FBP). All four cars achieved very low emissions levels, with some clear differences between the vehicle technologies. Even at these low emissions levels, all four cars showed very little short-term sensitivity to gasoline sulphur content. The measured effects of the other gasoline properties were small and often conflicting, with differing directional responses for different vehicles and emissions.
Journal Article

Fuel Additive Transport into Engine Oil Determination using Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC)

2021-09-21
2021-01-1149
The transport of fuel-borne additives into the engine oil is a critical factor for the efficacy with which the additive functionality can be imparted on the engine. This paper describes the combination of Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC) to determine the real-time additive concentrations and transfer ratios in a spark-ignition, 2-liter GM LHU engine. The current research used a continuous sample circuit from the engine sump which passed through an integrating cavity flow cell to enhance the LIF signal. In the absence of a fluorescence signature of any of the native additive species, a suitable fluorescing dye was selected to simulate the additive. After establishing rigorous calibration curves, LC was employed as a referee method to do a direct comparison with the LIF determined dye concentrations.
Technical Paper

FC-W®: An Oil Standard for Four-Stroke Cycle Outboard Engines

2004-09-27
2004-32-0025
The Oil Certification Committee of the National Marine Manufacturers Association has developed FC-W®, a new standard for crankcase lube oil used in four-stroke cycle inboard, outboard, and sterndrive marine engines. A sub-committee representing the marine engine industry, the oil industry, oil testing laboratories, and the NMMA engineering standards group was formed to study the lubrication and corrosion prevention needs of four-stroke cycle engines. The sub-committee developed a rust test and an engine test as well as adopting 3 industry standard bench tests. These tests, together with formulation restrictions are used to identify oils that meet the requirements for use in four-stroke cycle marine engines. This paper gives an overview of the development of the new tests, formulation restrictions, and product approval system.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3630
The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Development of Next-Generation Continuously Variable Transmission Fluid Technology

2012-09-10
2012-01-1670
Public concern and increasing regulations surrounding environmental issues, such as CO₂ emissions, are making it important for car makers to improve the fuel efficiency of the vehicles they manufacture and sell. A wide array of transmission technologies are being employed towards this end including, but not limited to, 6, 7, and 8 speeds stepped automatic transmissions, dual clutch transmissions (DCT) and continuously variable transmissions (CVT). The number of passenger cars equipped with CVTs has been increasing and push belt CVT types (b-CVT) are widely used. Since engine torque is transferred to the wheels via friction between the steel elements of the belt and the steel pulleys in a b-CVT, having a high metal on metal friction is required. As the CVT fluid is a key part of the CVT system, using a special CVT Fluid (CVTF) is critical in order to provide and maintain the required high metal-on-metal friction performance.
Technical Paper

Development and Introduction of Chrysler's New Automatic Transmission Fluid

1998-10-19
982674
Chrysler began a limited development program directed toward a new automatic transmission fluid (ATF) early in 1989 and launched a full time effort in 1994. The development process for the new ATF involved a significant level of bench testing and eventually vehicle tests to evaluate the durability and shift quality of the ATF. The bench tests included those that pertain to oxidation and shear stability, anti-wear, frictional properties and torque converter shudder. Vehicle tests were primarily extended durability in both internal vehicle fleets and at external taxi sites. The mileage accumulated in this phase of the development program exceeded two million miles, all with no fluid drains out to 100,000 miles. Additionally, shift feel tests were conducted in Chrysler vehicles to verify compliance to targets. This paper summarizes the tests and results that lead to the development of the new Chrysler fill-for-life automatic transmission fluid.
Technical Paper

Automatic Transmission and Driveline Fluids*

2007-10-29
2007-01-3988
This paper provides an overview of driveline fluids, in particular automatic transmission fluids (ATFs), and is intended to be a general reference for those working with such fluids. Included are an introduction to driveline fluids, highlighting what sets them apart from other lubricants, a history of ATF development, a description of key physical ATF properties and a comparison of ATF fluid specifications. Also included are descriptions of the chemical composition of such fluids and the commonly used basestocks. A section is included on how to evaluate used driveline oils, describing common test methods and some comments on interpreting the test results. Finally the future direction of driveline fluid development is discussed. A glossary of terms is included at the end.
Technical Paper

An Investigation of Long and Short Duration Tests for Evaluating Engine Non-Starts caused by CCD Flaking

2003-05-19
2003-01-2014
Two engine dynamometer test protocols are compared for their ability to discriminate and duplicate the field phenomenon of engine non-start due to combustion chamber deposit (CCD) flaking. The first, a protocol based on a 625 hour deposit accumulation cycle, has been shown in prior work [1, 2] to reflect field experience and discriminate the effects of various fuel additive treatments. The second, a protocol based on a 60 hour deposit accumulation cycle, was developed in an attempt to significantly reduce the time, and thus cost, of testing. Results indicate the shorter protocol is repeatable and has similar discrimination with respect to fuel and fuel additive impact on the no-start phenomenon. There are, however, differences in the results that indicate there may be a severity difference between the tests. The tests both show there are clearly differences in the engine no-start impact of deposits formed by fuel and additives.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
X