Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture

2004-10-25
2004-01-3015
The influence of big-end bore fretting on connecting rod fatigue fracture is investigated. A finite element model, including rod-bearing contact interaction, is developed to simulate a fatigue test rig where the connecting rod is subjected to an alternating uniaxial load. Comparison of the model results with a rod fracture from the fatigue rig shows good correlation between the fracture location and the peak ‘Ruiz’ criterion, rather than the peak tensile stress location, indicating the potential of fretting to initiate a fatigue fracture and the usefulness of the ‘Ruiz’ criterion as a measure of location and severity. The model is extended to simulate a full engine cycle using pressure loads from a bearing EHL analysis. A fretting map and a ‘Ruiz’ criterion map are developed for the full engine cycle, giving an indication of a safe ‘Ruiz’ level from an existing engine which has been in service for more than 5 years.
Technical Paper

The New DaimlerChrysler 5.7L Hemi V-8 Engine: Design and Advanced Simulation Techniques

2002-10-21
2002-01-2816
For the 2003 model year DaimlerChrysler Corporation will launch a totally new 5.7L V-8 engine for applications of the Dodge Ram pick-up truck. The new engine was created largely within a digital environment using the latest computer aided design (CAD) and computer aided engineering (CAE) techniques and tools. Utilizing a co-located team of design engineers, designers, and CAE engineers enabled the simulations to impact the design from program inception to the assembly line, saving program time and investment. This paper describes the successful merging of design and advanced analysis techniques by highlighting examples throughout the new HEMI® program. Case studies include issues in the areas of structural optimization, engine loading, lubrication circuit, cooling circuit, and manufacturing.
Technical Paper

The Application of Variable Event Valve Timing to a Modern Diesel Engine

2000-03-06
2000-01-1229
DaimlerChrysler and Mechadyne have undertaken a piece of work to investigate the opportunities for improving the operation of light duty diesel engines using variable valve timing. The very high compression ratios used in this type of engine make it essential to be able to alter the valve open periods to affect exhaust valve opening and intake valve closing, whilst leaving the valve motions largely unchanged around overlap top dead centre to avoid valve to piston contact. This paper presents an overview of the design solution, a description of the simulation model used, performance and economy data predicted by the model and a discussion of other areas of opportunity where improvements may be possible.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Sooted Diesel Engine Oil Pumpability Studies as the Basis of a New Heavy Duty Diesel Engine Oil Performance Specification

2002-05-06
2002-01-1671
Changing diesel engine emission requirements for 2002 have led many diesel engine manufacturers to incorporate cooled Exhaust Gas Recirculation, EGR, as a means of reducing NOx. This has resulted in higher levels of soot being present in used oils. This paper builds on earlier work with fresh oils and describes a study of the effect of highly sooted oils on the low temperature pumpability in diesel engines. Four experimental diesel engine oils, of varying MRV TP-1 viscosities, were run in a Mack T-8 engine to obtain a soot level ranging between 6.1 and 6.6%. These sooted oils were then run in a Cummins M11 engine installed in a low temperature cell. Times to lubricate critical engine components were measured at temperatures ranging between -10 °C and -25 °C. A clear correlation was established between the MRV TP-1 viscosity of a sooted oil and the time needed to lubricate critical engine components at a given test temperature.
Journal Article

Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals

2011-04-12
2011-01-1157
Production NO sensors have a strong cross-sensitivity to ammonia which limits their use for closed-loop SCR control and diagnostics since increases in sensor output can be caused by either gas component. Recently, Ammonia/NO Ratio (ANR) perturbation methods have been proposed for determining the dominant component in the post-SCR exhaust as part of the overall SCR control strategy, but these methods or the issue of sensor cross-sensitivity have not been critically evaluated or studied in their own right. In this paper the dynamic sensor direct- and cross-sensitivities are estimated from experimental FTIR data (after compensating for the dynamics of the gas sampling system) and compared to nominal values provided by the manufacturer. The ANR perturbation method and the use of different input excitations are then discussed within an analytical framework, and applied to experimental data from a large diesel engine.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Round Robin Noise Measurement System Analysis Using Light Duty Diesel Engine

2015-06-15
2015-01-2299
NVH development of light duty diesel engines require significant collaboration with the OEM as compared to medium duty and heavy duty diesel engines. Typically, competitive benchmark studies and customer expectations define the NVH targets at the vehicle level and are subsequently cascaded down to the powertrain level. For engine manufacturing companies like Cummins Inc., it is imperative to work closely with OEM to deliver on the NVH expectations. In certain situations, engine level NVH targets needs to be demonstrated in the OEM or 3rd party acoustic test facility for customer satisfaction or commercial purposes. Engine noise tests across different noise test facilities may introduce some variation due to differences in the acoustic test facilities, test hardware, instrumentation differences, etc. In addition, the engine itself is a major source of variation.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy

2007-10-29
2007-01-4108
A technique for rapid in situ measurement of the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background oil fluorescence; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the engine oil system. A low cost 532-nm laser diode was used for excitation.
Journal Article

Piston Friction Reduction by Reducting Piston Compression Height for Large Bore Engine Applications

2017-03-28
2017-01-1044
Improving engine efficiency and reducing the total cost of ownership demands engine friction loss reduction through optimal design, especially for large bore application considering the amount of fuel the engine consumes during its service life. Power cylinder is a big source for engine friction and piston accounts for about 25% to 47% of the power cylinder friction [1]. Thus the piston design needs to be optimized to minimize friction; and at the same time, not sacrificing the durability. This work focuses on piston friction reduction by utilizing shorter compression height piston for large bore engine application through analytical simulation study. From the simulation study, 12.5% friction reduction has been achieved in the piston skirt to liner interface for the shorter piston with longer connecting-rod compared to the baseline design.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Performance and Emissions Using Water in Diesel Fuel Microemulsion

2001-09-24
2001-01-3525
Alternative fuels providing diesel engine emission reductions are developed in order to provide practical solutions to environmental problems in different areas of the world. Diesel fuel emulsions containing water, considered as alternative fuels, have shown their potential to help reaching simultaneous reduction of NOx and PM exhaust emissions. In this study, diesel fuel microemulsions have been developed and optimized considering their cost-effectiveness. Water is incorporated into the fuel in the form of micelle structures, mostly using naturally derived surfactants. The finished fuel is visually transparent and thermodynamically stable over a wide range of storage and handling conditions. Experimental work was conducted to explore the impact of water in diesel fuel microemulsions on CIDI engine performance, regulated and non-regulated exhaust emissions.
Technical Paper

Performance Driver Information Systems, Enhancing the Fun-to-Drive Equation

2002-10-21
2002-21-0041
Most driver information systems offered in automobiles today display vehicle speed, fluid levels, fluid temperatures, and some basic diagnostic information (warnings, panel lamps). Optional driver information systems add to this list by offering fuel economy information, compass heading, outside temperature and other comfort and convenience related items. Very few provide information in regards to the real performance of the vehicle, its motion in 3-dimensional space, or the driver’s skill and performance. Making this information available to the driver can enhance the “fun-to-drive” aspects of driving.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Technical Paper

PGM Optimization by Robust Design

2005-10-24
2005-01-3849
A Robust Engineering experiment was performed to determine the effects PGM loading and placement on the FTP emissions of a 4 cylinder 2.4L and two 8 cylinder 4.7L vehicles. 1.3L catalytic converters were used containing a front and rear catalyst of equal volume. The experiment is defined by a Taguchi L-8 array. Eight different combinations of catalyst PGM loadings were aged and evaluated. Results show that nmHC and NOx emissions are predominately affected by the PGM loading of the front catalyst. The rear catalyst is insensitive to either Pt or Pd which can be used at low concentrations. Results also compare the benefits of Pd and Rh to reduce emissions. Confirmation runs suggest that significant reductions in PGM cost can be achieved over baseline designs.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Overall Results: Phase I Ad Hoc Diesel Fuel Test Program

2001-03-05
2001-01-0151
The future of diesel-engine-powered passenger cars and light-duty vehicles in the United States depends on their ability to meet Federal Tier 2 and California LEV2 tailpipe emission standards. The experimental purpose of this work was to examine the potential role of fuels; specifically, to determine the sensitivity of engine-out NOx and particulate matter (PM) to gross changes in fuel formulation. The fuels studied were a market-average California baseline fuel and three advanced low sulfur fuels (<2 ppm). The advanced fuels were a low-sulfur-highly-hydrocracked diesel (LSHC), a neat (100%) Fischer-Tropsch (FT100) and 15% DMM (dimethoxy methane) blended into LSHC (DMM15). The fuels were tested on modern, turbocharged, common-rail, direct-injection diesel engines at DaimlerChrysler, Ford and General Motors. The engines were tested at five speed/load conditions with injection timing set to minimize fuel consumption.
X