Refine Your Search

Topic

Author

Search Results

Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Validation Studies for an Advanced Aerodynamic Development Process of Cab-Over Type Heavy Trucks

2017-10-25
2017-01-7009
The implementation of an advanced process for the aerodynamic development of cab-over type heavy trucks at China FAW Group Corporation (FAW) requires a rigorous validation of the tools employed in this process. The final objective of the aerodynamic optimization of a heavy truck is the reduction of the fuel consumption. The aerodynamic drag of a heavy truck contributes up to 50% of the overall resistance and thus fuel consumption. An accurate prediction of the aerodynamic drag under real world driving conditions is therefore very important. Tools used for the aerodynamic development of heavy trucks include Computational Fluid Dynamics (CFD), wind tunnels and track and road testing methods. CFD and wind tunnels are of particular importance in the early phase development.
Journal Article

TPA and NVH Prognosis - Application to Mercedes Benz Car Development of New Hybrid Methods Coupling Digital Simulation with Prototype Testing Results

2012-06-13
2012-01-1535
Digital NVH development has become a common tool for any acoustic engineer. Vehicles in their early development stages are nowadays mainly described and validated as digital models. However there still remain needs for improvement in the domains of acoustic and vibration prediction, as instance: refining models, addressing intricate systems, and CAE resistant phenomena. In a background of increasing modularity and process transfers, hybrid methods coupling with testing results, have shown a great potential for improving the quality of NVH prognosis and development quality. Mercedes-Benz passenger car division has developed, tested and introduced a new engineering tool, based on the classical TPA applications coupled with hybrid simulation techniques. This toolbox is used to enhance the prognoses of acoustic interior noise and vibration comfort.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise

2016-06-15
2016-01-1834
This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
Journal Article

Prediction of Interior Noise in a Sedan Due to Exterior Flow

2015-06-15
2015-01-2331
Aero-vibro-acoustic prediction of interior noise associated with exterior flow requires accurate predictions of both fluctuating surface pressures across the exterior of a vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the interior of a vehicle. The simulation strategy used in this paper combines both CFD and vibro-acoustic methods. An accurate excitation field (which accounts for both hydrodynamic and acoustic pressure fluctuations) is calculated with a hybrid CAA approach based on an incompressible unsteady flow field with an additional acoustic wave equation. To obtain the interior noise level at the driver's ears a vibro-acoustic model is used to calculate the response of the structure and interior cavities. The aero-vibro-acoustic simulation strategy is demonstrated for a Mercedes-Benz S-class and the predictions are compared to experimental wind tunnel measurements.
Technical Paper

Prediction of Flow-Induced Noise of Automotive HVAC Systems

2011-04-12
2011-01-0493
Nowadays vehicle quality is rated for noise and vibration and the interior sound levels have become a major target of automotive companies. Strides have been made in reducing power train, tire and external wind noise over the years. However, HVAC and blower fan flow-induced noise reaches the interior cabin without any sound isolation and can strongly impact customer comfort. In the early stage of vehicle design, it is experimentally difficult to get an estimate of the flow pattern and sound levels. The goal of this study is to develop and validate a numerical noise prediction tool for complete HVAC systems noise, defined as the arrangement of sub-systems such as air intake duct, thermal mixing unit, blower, ducts and outlet vents. This tool can then be used during the development of vehicles to evaluate and optimize the aeroacoustics performances of the system without additional or belated experiments.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
Technical Paper

Numerical Simulation and Spectral Analysis of Pressure Fluctuations in Vehicle Aerodynamic Noise Generation

2002-03-04
2002-01-0597
A new approach is proposed and demonstrated for investigation of the spatial structure of fluctuations in unsteady aerodynamics results obtained using CFD. This approach is used in this study to isolate unsteadiness in the flow field due to coherent structures at relatively high frequency from the dominant organized motion, as well as from the computational noise, in unsteady data obtained from CFD simulations. These simulations are performed using the commercial CFD software, PowerFLOW, which employs a Lattice Boltzmann method and a very large-eddy simulation (VLES) model for small-scale turbulence. Spectral analysis is performed on the simulation data to compare with experimental results obtained in a wake plane for a simplified vehicle shape. A new frequency band filtering approach is used to visualize pressure fluctuations in the dominant frequency range responsible for aerodynamic noise.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code [1]. After a first comparison to a NACA 0012 test case, tonal noise components of a realistic automotive side view mirror are validated with in-house wind tunnel measurements. A zonal RANS/LES approach is used to ensure a realistic flow around the exterior side mirror mounted on a Mercedes-Benz passenger car. The provided compressible large eddy simulations are using non-reflecting boundary conditions in combination with a sponge zone approach to reduce hydrodynamic fluctuations and are in great accordance to measurements. The possibility of localizing and investigating the underlying feedback mechanism enables the chance for a targeted design of different appropriate remedies, which are finally confirmed by means of experimental comparison.
Technical Paper

NVH-Development of Electric Powertrains - CAE-Methods and NVH-Criteria

2014-06-30
2014-01-2072
Electric cars are getting popular more and more and the expectations of the customers are very challenging. Concerning comfort, the situation is clear: customers want an electric car to be quiet and without any annoying noise from the powertrain. To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have an accurate CAE-simulation and precise criteria to assess whining noise. Based on the experience with electric powertrains in research cars the CAE-modelling was improved and a new ‘whining intensity factor’ was acquired for the development of Daimler's electric cars. The results are a very low noise level and a minimized whining noise, nearly not noticeable giving a comfortable sound to the customers of the smart electric drive and the B-Class Electric Drive.
Journal Article

NVH-Challenges of Air Supply Subsystems for Automotive Fuel Cell Applications

2008-04-14
2008-01-0316
Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Automotive fuel cell systems mainly use compressed onboard stored hydrogen as fuel. Oxygen from ambient air is fed to the cathode of the fuel cell stack by an air supply subsystem. For its current and next generation air supply subsystem NuCellSys has employed screw type compressor technology, which in the automotive area initially was developed for supercharged internal combustion (IC) engines. As NVH expectations to fuel cell vehicles differ very much from IC-engine driven vehicles, specific efforts have to be taken to address the intense noise and vibration profile of the screw compressor. This paper describes different counter measures which have been implemented into the NuCellSys next generation air supply subsystem.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Journal Article

Methods for Measuring, Analyzing and Predicting the Dynamic Torque of an Electric Drive Used in an Automotive Drivetrain

2015-06-15
2015-01-2363
The driving comfort is an important factor for buying decisions. For the interior noise of battery electric vehicles (BEV) high frequency tonal orders are characteristic. They can for example be caused by the gearbox or the electric drive and strongly influence the perception and rating of the interior noise by the customer. In this contribution methods for measuring, analyzing and predicting the excitation by the dynamic torque of the electric drive are presented. The dynamic torque of the electric drive up to 3.5 kHz is measured on a component test bench with the help of high frequency, high precision torque transducer. The analysis of the results for the order of interest shows a good correlation with the acoustic measurements inside the corresponding vehicle. In addition an experimental and numerical modal analysis of the rotor of the electric drive are performed.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Investigations on Chemical Ageing of Diesel Oxidation Catalysts and Coated Diesel Particulate Filters

2010-04-12
2010-01-1212
For medium- and heavy-duty diesel engines, the development of new catalyst technologies and particulate filters is necessary to fulfill increasingly stringent emission regulations. An important aspect is the durability of the after-treatment system and therefore its efficiency over lifetime. Lubrication oil additives contain components such as phosphorous or zinc to ensure engine durability. Diesel oxidation catalyst (DOC) and coated diesel particulate filter (cDPF) catalytic coatings are negatively influenced by contamination on the surface with these components (chemical ageing). The components have a negative impact on the exhaust after-treatment systems performance. Additionally the cDPF is filled with oil ash. Engine tests are conducted to analyze the effect of lubrication oil additives on after-treatment system performance. In one study, lubrication oil with increased sulfur ash content is used.
X