Refine Your Search

Topic

Author

Search Results

Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

2018-04-03
2018-01-0802
The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Technical Paper

A Method Using FEA for the Evaluation of Tooling and Process Requirements to Meet Dimensional Objectives

2020-04-14
2020-01-0497
Dimensional Engineering concentrates effort in the early design phases to meet the dimensional build objectives in automotive production. Design optimization tools include tolerance stack up, datum optimization, datum coordination, dimensional control plans, and measurement plans. These tools are typically based on the assumption that parts are rigid and tooling dimensions are perfect. These assumptions are not necessarily true in automotive assemblies of compliant sheet metal parts on high volume assembly lines. To address this issue, Finite Element Analysis (FEA) has been increasingly used to predict the behavior of imperfect and deformable parts in non-nominal tooling. This paper demonstrates an application of this approach. The complete analysis is divided into three phases. The first phase is a nominal design gravity analysis to validate the nominal design and tooling.
Journal Article

Acoustical Modeling and Test Correlation of an Intake Manifold and Charge Air Cooler Assembly for a 4-Cylinder Turbocharged Engine

2023-05-08
2023-01-1076
The charge air cooler (CAC), which is placed between the compressor and the engine intake manifold (IM), is an important component in a turbocharged engine. It is essential to capture the temperature change, the pressure drop or the acoustical wave behavior of the charge air cooler in the one-dimensional(1D) simulation model for the predictive accuracy of engine performance and intake noise. In this paper, the emphasis is on the acoustic modeling of an intake manifold and charge air cooler assembly for the low frequency engine intake order noise. In this assembly, the core of the charge air cooler is embedded in the plenum of the intake manifold. The modeling and correlation process is comprised of three steps. First, the charge air cooler core is removed from the intake manifold and put into a rectangular box matching its envelope with a single air inlet and outlet, thereby simplifying the complex shape of the manifold with the different runner components.
Technical Paper

An Experimental Study on Static and Fatigue Strengths of Resistance Spot Welds with Stack-up of Advanced High Strength Steels and Adhesive

2016-04-05
2016-01-0389
This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Technical Paper

Assessment of Critical Plane Models Using Non-Proportional Low Cycle Fatigue Test Data of 304 Stainless Steel

2016-04-05
2016-01-0380
Two popular critical plane models developed by Fatemi-Socie and Smith-Watson-Topper were derived from the experimental observations of the nucleation and growth of cracks during loading. The Fatemi-Socie critical plane model is applicable for the life prediction of materials for which the dominant failure mechanism is shear crack nucleation and growth, while the Smith-Watson-Topper model, for materials that fail predominantly by crack growth on planes perpendicular to the planes of maximum tensile strain or stress. The two critical plane models have been validated primarily by in-phase and 90° out-of-phase loading, and few, on the complex, non-proportional loading paths. A successful critical plane model should be able to predict both the fatigue life and the dominant failure planes. However, some experimental studies indicate the 304 stainless steel has the two possible failure modes, shear and tensile failure dominant, depending on the loading mode and stress and strain states.
Technical Paper

Automotive Dimensional Quality Control with Geometry Tree Process

2020-04-14
2020-01-0480
Geometry Tree is a term describing the product assembly structure and the manufacturing process for the product. The concept refers to the assembly structure of the final vehicle (the Part Tree) and the assembly process and tools for the final product (the Process Tree). In the past few years, the Geometry Tree-based quality process was piloted in the FCA US LLC assembly plants and has since evolved into a standardized quality control process. In the Part Tree process, the coordinated measurements and naming convention are enforced throughout the different levels of detailed products to sub-assemblies and measurement processes. The Process Tree, on the other hand, includes both prominently identified assembly tools and the mapping of key product characteristics to key assembly tools. The benefits of directly tying critical customer characteristics to actual machine components that have a high propensity to influence them is both preventive and reactive.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
Technical Paper

CAE Cooling Module Noise and Vibration Prediction Methodology and Challenges

2020-04-14
2020-01-1262
In the NVH domain, the cooling module is an important subsystem in ground vehicles. Recently, with the development of small high output turbocharged internal combustion (IC) engines, cooling module noise and vibration has become more challenging. Furthermore, with plug-in hybrid electric vehicle (PHEV), in some cases the cooling fan could be operational while the IC engine is not running. This poses a significant challenge for cabin noise enhancement. Small turbocharged IC engines typically require higher cooling capacity resulting in larger fan size designs with higher speed. Accurate prediction of the unbalance loads generated by cooling fan and loads transferred to the body are critical for the Noise Vibration and Harshness (NVH) performance of the vehicle. If the NVH risk of cooling module operation is not well quantified and addressed early in the program, attempts to find solutions in post launch stage could be very expensive and not as effective.
Technical Paper

Comparison of Direct and Metamodel Based Optimization in the Coolant Jacket Design of an IC Engine

2021-04-06
2021-01-0841
This paper focuses on the conjugate heat transfer analysis of an I4 engine, and discusses optimization of the coolant passages in engine coolant jackets. Direct Optimization approach integrates an optimizer with the numerical solver. This method of optimization is compared with a metamodel-based optimization in which a metamodel is generated to aid in finding an optimal design. The direct optimization and metamodel approaches are compared in terms of their accuracy, and execution time.
Journal Article

Degradation Analysis of Flexible Film Cables in an Automotive Environment

2017-03-28
2017-01-0317
Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis. Degradation analysis often provides more information than failure time data for assessing reliability and predicting the remnant life of a system.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Effect of Pre-Strain on Edge Cracking Limit for Advanced High-Strength Steel Using Digital Image Correlation

2017-03-28
2017-01-0394
Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
Journal Article

Effects of Punch Configuration on the AHSS Edge Stretchability

2017-03-28
2017-01-1705
The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels. The stretchability of the as-sheared edge inside the hole can be influenced by the material property, die condition and processing parameters.
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
X