Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
There are many noise sources from the vehicle fuel system to generate noise inside a vehicle. Among them, the pressure pulsation due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system at engine idle condition is presented. First, the interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise is exhibited. The problem frequency ranges of the pulse noise were identified.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Technical Paper

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources - Part II

2011-05-17
2011-01-1620
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻ 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

A Domain-Centralized Automotive Powertrain E/E Architecture

2021-04-06
2021-01-0786
This paper proposes a domain-centralized powertrain E/E (electrical and/or electronic) architecture for all-electric vehicles that features: a powerful master controller (domain controller) that implements most of the functionality of the domain; a set of smart actuators for electric motor(s), HV (High Voltage) battery pack, and thermal management; and a gateway that routes all hardware signals, including digital and analog I/O, and field bus signals between the domain controller and the rest of the vehicle that is outside of the domain. Major functional safety aspects of the architecture are presented and a safety architecture is proposed. The work represents an early E/E architecture proposal. In particular, detailed partitioning of software components over the domain’s Electronic Control Units (ECUs) has not been determined yet; instead, potential partitioning schemes are discussed.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool Down Performance

2018-04-03
2018-01-0786
The front-end air flow conditions have a substantial impact on the cool down performance of a vehicle Heating, Ventilation and Air-Conditioning (HVAC) system. The performance of a mobile HVAC system is analyzed by conducting tests on the vehicle in a drive cell, subjecting it to different drive cycles. This now can be done virtually using system level simulation or one-dimensional (1D) tools. Target values for condenser air inlet velocity and temperature for these HVAC performance focused drive cycles needs to be established during the development phase to meet the cool down functional objectives of the vehicle. Thus, in the early stages of development, 1D tools play a major role. Condenser air flow should be sufficient and the temperature should be as low as possible at different vehicle operating conditions to have good air-conditioning (AC) performance.
Technical Paper

A Novel Strategy for Sizing the Mechanical Pump in a Passenger Car Automatic Transmission

2021-04-06
2021-01-0692
In recent decades, there has been a growing focus on improving overall vehicle efficiency and fuel economy due to growing customer awareness and more stringent environmental regulations. Effort has been placed on improving the engine efficiency and reducing the losses of the transmission and driveline. One essential component of this process is to correctly size the transmission oil pump as it is one of the main energy consumers in the powertrain. Conversely, the oil pump has a critical mission of ensuring reliable and high quality gear shift as well as supplying lubrication and cooling oil to various components in the transmission. This paper outlines a strategy to systematically understand and quantify the main requirements for sizing the oil pump to ensure adequate performance while minimizing the energy consumption of the pump. The proposed framework is a three-legged approach.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

A Study on Robust Air Induction Snorkel Volume Velocity Prediction Using DFSS Approach

2016-04-05
2016-01-0480
The noise radiated from the snorkel of an air induction system (AIS) can be a major noise source to the vehicle interior noise. This noise source is typically quantified as the snorkel volume velocity which is directly related to vehicle interior noise through the vehicle noise transfer function. It is important to predict the snorkel volume velocity robustly at the early design stage for the AIS development. Design For Six Sigma (DFSS) is an engineering approach that supports the new product development process. The IDDOV (Identify-Define-Develop-Optimize-Verify) method is a DFSS approach which can be used for creating innovative, low cost and trouble free products on significant short schedules. In this paper, an IDD project which is one type of DFSS project using IDDOV method is presented on developing a robust simulation process to predict the AIS snorkel volume velocity. First, the IDDOV method is overviewed and the innovative tools in each phase of IDDOV are introduced.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
X