Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the advantages of the new SAE standard for INVOLUTE SPLINES from a design standpoint

1959-01-01
590056
INVOLUTE SPLINES enjoy three major advantages over their straight-sided counterparts: 1. New design concepts have given a more rational approach to clearances and errors. 2. Manufacturing is cheaper and more accurate. 3. Gaging is simpler. Thus, the involute spline standard of SAE and ASA continue to take precedence over the older straight-sided standards.
Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Vehicle Sound Package - Art or Science?

1972-02-01
720508
Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Vehicle Attitude Changes from Aerodynamic Forces

2018-04-03
2018-01-0711
A vehicle driving down the road naturally pitches, rolls and heaves due to road inputs (for example, bumps, potholes, driving dynamics, etc.) and also due to the influence of aerodynamic forces. The vehicle attitude changes directly as a result of aerodynamic forces that can be seen during wind tunnel testing of production level vehicles, with some measurements possible in order to evaluate the aerodynamics effects. This naturally occurring phenomenon is not always represented in aerodynamics simulations, either for reduced scale models or computational fluid dynamics (CFD) simulations or even rigid body full scale testing. It can be shown through visual techniques how much deflection is typically occurring, including both vehicle attitude changes as well as vehicle body distortions. From the analysis, an adjustment to the CFD models can be made to compensate for the aerodynamics effects.
Technical Paper

Vehicle Aerodynamic Shape Optimization

2011-04-12
2011-01-0169
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Vapor and Liquid Composition Differences Resulting from Fuel Evaporation

1999-03-01
1999-01-0377
Liquid fuels and the fuel vapors in equilibrium with them typically differ in composition. These differences impact automotive fuel systems in several ways. Large compositional differences between liquid and vapor phases affect the composition of species taken up within the evaporative emission control canister, since the canister typically operates far from saturation and doesn't reach equilibrium with the fuel tank. Here we discuss how these differences may be used to diagnose the mode of emission from a sealed container, e.g., a fuel tank. Liquid or vapor leaks lead to particular compositions (reported here) that depend on the fuel components but are independent of the container material. Permeation leads to emissions whose composition depends on the container material. If information on the relative permeation rates of the different fuel components is available, the results given here provide a tool to decide whether leakage or permeation is the dominant mode of emission.
Technical Paper

Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions

1997-05-01
971650
A simple set of equations has been developed to characterize automotive fuel behavior in fuel tanks, fuel vapor systems and fuel rails, particularly under hot weather conditions. The system of equations links the vapor pressure P, the temperature T, and the mass fraction evaporated Z. Parameters are determined empirically from laboratory vapor pressure and distillation tests. With appropriate values for heat capacity, heat of vaporization, and vapor composition, the equations can be used to estimate upper flammability limits, fuel weathering under hot fuel handling conditions, pressure rise in tanks, and evaporative vapor generation. The equations were developed as part of a larger fuel vapor system model.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
X