Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Journal Article

Turbulence Models and Model Closure Coefficients Sensitivity of NASCAR Racecar RANS CFD Aerodynamic Predictions

2017-03-28
2017-01-1547
Cost benefit and teraflop restrictions imposed by racing sanctioning bodies make steady-state RANS CFD simulation a widely accepted first approximation tool for aerodynamics evaluations in motorsports, in spite of its limitations. Research involving generic and simplified vehicle bodies has shown that the veracity of aerodynamic CFD predictions strongly depends on the turbulence model being used. Also, the ability of a turbulence model to accurately predict aerodynamic characteristics can be vehicle shape dependent as well. Modifications to the turbulence model coefficients in some of the models have the potential to improve the predictive capability for a particular vehicle shape. This paper presents a systematic study of turbulence modeling effects on the prediction of aerodynamic characteristics of a NASCAR Gen-6 Cup racecar. Steady-state RANS simulations are completed using a commercial CFD package, STAR-CCM+, from CD-Adapco.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
Technical Paper

Track Bar Bracket Development with the Help of Advanced Optimization Techniques

2016-04-05
2016-01-1387
The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
Technical Paper

Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni

2016-04-05
2016-01-0421
This research studies the transformation kinetics of austempered ductile iron (ADI) with and without nickel as the main alloying element. ADI has improved mechanical properties compared to ductile iron due to its ausferrite microstructure. Not only can austempered ductile iron be produced with high strength, high toughness and high wear resistance, the ductility of ADI can also be increased due to high carbon content austenite. Many factors influence the transformation of phases in ADI. In the present work, the addition of nickel was investigated based on transformation kinetics and metallography observation. The transformation fractions were determined by Rockwell hardness variations of ADI specimens. The calculation of transformation kinetics and activation energy using the “Avrami Equation” and “Arrhenius Equation” is done to describe effects of nickel alloy for phase reactions.
Technical Paper

Static Loading Analysis of Third Row Floor Duct System Using Finite Element Method

2017-03-28
2017-01-0168
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
Technical Paper

Sliding Mesh Fan Approach Using Open-Source Computational Fluid Dynamics to Investigate Full Vehicle Automotive Cooling Airflows

2023-04-11
2023-01-0761
Cooling airflow is an essential factor when it comes to vehicle performance and operating safety. In recent years, significant efforts have been made to maximize the flow efficiency through the heat exchangers in the under-hood compartment. Grille shutters, new fan shapes, better sealings are only some examples of innovations in this field of work. Underhood cooling airflow simulations are an integral part of the vehicle development process. Especially in the early development phase, where no test data is available to verify the cooling performance of the vehicle, computational fluid dynamics simulations (CFD) can be a valuable tool to identify the lack of fan performance and to develop the appropriate strategy to achieve airflow goals through the heat exchangers. For vehicles with heat exchangers in the underhood section the airflow through those components is of particular interest.
Journal Article

Sizing of Coolant Passages in an IC Engine Using a Design of Experiments Approach

2015-04-14
2015-01-1734
Determining coolant flow distribution in a topologically complex flow path for efficient heat rejection from the critical regions of the engine is a challenge. However, with the established computational methodology, thermal response of an engine (via conjugate heat transfer) can be accurately predicted [1, 2] and improved upon via Design of Experiment (DOE) study in a relatively short timeframe. This paper describes a method to effectively distribute the coolant flow in the engine coolant cavities and evenly remove the heat from various components using a novel technique of optimization based on an approximation model. The current methodology involves the usage of a sampling technique to screen the design space and generate the simulation matrix. Isight, a process automation and design exploration software, is used to set the framework of this study with the engine thermal simulation setup done in the CFD solver, STAR-CCM+.
Technical Paper

Sequence Training and Data Shuffling to Enhance the Accuracy of Recurrent Neural Network Based Battery Voltage Models

2024-04-09
2024-01-2426
Battery terminal voltage modelling is crucial for various applications, including electric vehicles, renewable energy systems, and portable electronics. Terminal voltage models are used to determine how a battery will respond under load and can be used to calculate run-time, power capability, and heat generation and as a component of state estimation approaches, such as for state of charge. Previous studies have shown better voltage modelling accuracy for long short-term memory (LSTM) recurrent neural networks than other traditional methods (e.g., equivalent circuit and electrochemical models). This study presents two new approaches – sequence training and data shuffling – to improve LSTM battery voltage models further, making them an even better candidate for the high-accuracy modelling of lithium-ion batteries. Because the LSTM memory captures information from past time steps, it must typically be trained using one series of continuous data.
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Journal Article

Review and Assessment of Frequency-Based Fatigue Damage Models

2016-04-05
2016-01-0369
Several popular frequency-based fatigue damage models (Wirsching and Light, Ortiz and Chen, Larsen and Lutes, Benascuitti and Tovo, Benascuitti and Tovo with α.75, Dirlik, Zhao and Baker, and Lalanne) are reviewed and assessed. Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from Dirlik’s dissertation are used to study the accuracies of these methods. Recommendations on how to set up the inverse fast Fourier transform to synthesize load data and obtain accurate rainflow cycle counts are given. Since Dirlik’s method is the most commonly used one in industry, a comprehensive investigation of parameter setups for Dirlik’s method is presented. The mean error and standard deviation of the error between the frequency-based model and the rainflow cycle counting method was computed for fatigue slope exponent m ranging from 3 to 12.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
X