Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
Journal Article

Using Generic Tyre Parameters for Low Friction Surfaces in Full Vehicle Simulations

2017-03-28
2017-01-1506
An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
Technical Paper

Use of Statistical Energy Analysis in Vehicle NVH Design Cycle

2010-10-17
2010-36-0525
Statistical Energy Analysis (SEA) is used to predict high-frequency acoustic and vibration response in vehicle NVH design. Early in the design cycle prototype hardware is not yet available for testing and the geometry is still too poorly defined and changing too quickly for Finite Element Analysis or Boundary Element Analysis to be an effective NVH analysis tool. For most of the concept phase and early design phase, SEA uniquely offers the ability to virtually predict the main noise transfer paths and to support target setting for component and full vehicle NVH design. At later stages of the design process, SEA combines with NVH testing to provide more accurate predictions and to provide guidance for more efficient testing. This paper describes the established uses of SEA in the vehicle industry and presents an overview of the NVH design cycle and how SEA is used to support NVH development at different stages.
Technical Paper

Use of Polyurethane Material Models for Simulating Leg-Form Impact in Different Explicit Finite Element Codes

1998-09-29
982359
Compressible plastic foams are used throughout the interior and bumper systems of modern automobiles for safety enhancement and damage prevention. Consequently, modeling of foams has become very important for automobile engineers. To date, most work has focused on predicting foam performance up to approximately 80% compression. However, in certain cases, it is important to predict the foam under maximum compression, or ‘bottoming-out.’ This paper uses one such case-a thin low-density bumper foam impacted by a pedestrian leg-form at 11.1 m/s-to investigate the ‘bottoming-out’ phenomenon. Multiple material models in three different explicit Finite Element Method (FEM) packages (RADIOSS, FCRASH, and LS-DYNA) were used to predict the performance. The finite element models consisted of a foam covered leg-form impacting a fixed bumper beam with a foam energy absorber.
Journal Article

Tribological Behaviour of an Automotive Brake Pad System Under Los Angeles City Traffic Test Conditions

2022-03-29
2022-01-0769
The Los Angeles City Traffic (LACT) brake test is well known acclaimed procedure used by many vehicle manufacturers to assess the brake pad wear behavior and to investigate the Noise, Vibration and Harness (NVH) performance of the brake system. The LACT driving route consists of a set of real-world driving conditions, which has been considered representative of the US passenger vehicle market. The scope of this study is to mimic the LACT test using finite element analysis (FEA) to calculate the wear displacement based on Rhee’s theory. The Leading-edge and trailing edge of the brake pad’s wear tendency is also predicted from the simulation. The finite element model for wear simulation consists of brake system viz., Rotor, Knuckle, Pads, Anchor bracket, Piston, and Caliper.
Technical Paper

Transient Non-linear FEA and TMF Life Estimates of Cast Exhaust Manifolds

2003-03-03
2003-01-0918
A transient nonlinear Finite Element Analysis (FEA) method has been developed to simulate the inelastic deformation and estimate the thermo-mechanical fatigue life of cast iron and cast steel exhaust manifolds under dynamometer test conditions. The FEA uses transient heat transfer analysis to simulate the thermal loads on the manifold, and includes the fasteners, gasket and portion of the cylinder head. The analysis incorporates appropriate elastic-plastic and creep material models. It is shown that the creep deformation is the most single critical component of inelastic deformation for cast iron manifold ratcheting, gasket sealing, and crack initiation. The predicted transient temperature field and manifold deformation of the FEA model compares exceptionally well with two experimental tests for a high silicon-molybdenum exhaust manifold.
Technical Paper

Transient Dynamic Analysis of Suspension System for Component Fatigue Life Estimation

2007-04-16
2007-01-0638
For suspension systems, fatigue and strength simulations are accomplished mostly at the component level. However, the selection of loading conditions and replication of boundary conditions at the component level may be difficult. A system level simulation eliminates most of the discrepancy between component level and vehicle level environment yielding realistic results. Further advantage of system level simulation is that the boundary conditions are limited to suspension mounting points at body or frame and the loading is limited to wheel-end or tire patch loading. This provides for a robust set of boundary constraints that are known and repeatable, and loads that are simpler and of relatively higher accuracy. Here, the nonlinear transient dynamic behavior of a suspension system along with its frame and mounting was simulated using a multibody finite element analysis (FEA).
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The Finite Element Analysis of Planetary Gear Pinion Shaft Staking

2016-04-05
2016-01-1358
During the planetary gear assembly, staking is a widely-used method for affixing pinion shafts onto the position. A reliable staking process not only prevents the movement of shaft during transmission operation, but also minimizes the distortion of the assembly due to the staking process. The quality of staking operations is determined by the component designs, the process parameters, and the staking tool geometry. It would be extremely time-consuming and tedious to evaluate these factors empirically; not even mention the requirement of prototypes in the early stage of a new program. A Finite Element methodology is developed to simulate the complete staking process including shaft press in, staking, and after staking tool release. The critical process parameters, such as staking force, staking length, shaft and holes interference amount, etc., are then evaluated systematically.
Technical Paper

The Finite Element Analysis of Axle Nut Crimping

2017-03-28
2017-01-1323
In the assembly of axles and wheel hubs, a nut is frequently used to fasten them as one unit. In order for the nut to hold the assembly in its final position, crimping is a widely-used method which prevents nut from loosening. A reliable crimping process not only prevents movement of the nut during axle operation but should also minimize the possibility of cracking the rim. If the nut cracks during assembly, it can start to rust and deteriorate. The service life span of the axle assembly hence shortens as a result. The quality of crimping operation is determined by the component designs, the process parameters, and the crimping tool geometry. It would be time-consuming and costly to evaluate these factors empirically; let alone the requirement of prototypes in the early stage of a new program. A dynamic finite element methodology which adopts the Arbitrary Lagrangian-Eulerian formulation from ABAQUS explicit solver is developed to simulate the complete crimping process.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

The Effect of Contact Surface and Bolt Torque Variations on the Brake Rotor Run-Out

1998-02-23
980596
Deformation of the hub, rotor, and the wheel results in lateral run-out of the rotor. The effect of contact surface variations and bolt forces on the deformation is investigated. It is analytically shown that the run-out due to deformation is caused primarily due to the radial and circumferential moments generated in the hub and the rotor due to bolt tightening. Case studies illustrate the interaction between hub, rotor, and the wheel for various surface conditions. Design guidelines are provided to reduce rotor run-out.
Journal Article

The Application of Simplified Loadpath Models to Improve Body Structure Knowledge

2020-04-14
2020-01-0912
Simplified Loadpath Models (SLMs) of the advanced body in white (BIW) design concept provide a highly flexible and rapid platform to explore body structure loadpath alternatives and conduct performance:weight optimization. The SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. While the benefits of loadpath optimization through Beam element parameter variation is well-documented and applied extensively for these types of models, this paper covers another valuable benefit of the SLMs; to provide a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes. This data provides valuable information that can be leveraged to support more intelligent and efficient body structure joint designs.
Technical Paper

The Application of Experimental Design Method to Brake Induced Vehicle Vibrations

1998-02-23
980902
Vehicle sensitivity to brake induced vehicle vibration has been one of the key factors impacting overall vehicle quality. This directly affects long term customer satisfaction. The objective of this investigation is to understand the sensitivities of a given suspension, and steering system with respect to brake induced vehicle vibration, and develop possible solutions to this problem. Design of experiment methods have been used for this chassis system sensitivity study. The advantage of applying the design of experiment methodology is that it facilitates an understanding of the interactions between the hardware components and the sensitivity of the system due to the component change. The results of this investigation have indicated that the friction of suspension joints may affect vehicle system response significantly.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

The 1970 Ford Dual Circuit Air Brake System

1970-02-01
700504
The braking system presented in this article represents a new and forward thinking philosophy regarding commercial vehicle air brake systems. A concept that provides responsive service and emergency brake applications with optimum vehicle control, by the same driver action on the brake pedal. The uniqueness of the total system, and each circuit's function thereof, is explained in basic detail. In addition, the engineering, quality control, and assembly techniques to manufacture the vehicle with assurance that design intent is achieved, are discussed.
X