Refine Your Search

Topic

Search Results

Viewing 1 to 6 of 6
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
X