Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual and Experimental Analysis of Brake Assist Systems

2006-04-03
2006-01-0477
The paper deals with the virtual and experimental analysis of two commercial Mechanical Brake Assist systems. They are described in detail, then modeled and experimentally evaluated through a Hardware-In-the-Loop test bench and road tests. Three different kinds of drivers are compared, from the point of view of the performance increase promised by Brake Assist during an emergency brake maneuver. The three driver types are based on the measurement of the behavior of real drivers, as it is presented in specific research activities in literature.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Technical Paper

Tire Experimental Characterization Using Contactless Measurement Methods

2021-08-31
2021-01-1114
In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements.
Technical Paper

The NVH Behavior of Internal Combustion Engines used in Range Extended Electric Vehicles

2013-05-13
2013-01-2002
The electrification of vehicle propulsion has changed the landscape of vehicle NVH. Pure electric vehicles (EV) are almost always quieter than those powered by internal combustion engines. However, one of the key challenges with the development of range extended electric vehicles (ReEV) is the NVH behavior of the vehicle. Specifically, the transition from the EV mode to one where the range extender engine is operational can cause significant NVH issues. In addition, the operation of the range extender engine relative to various driving conditions can also pose significant NVH concerns. In this paper internal combustion engines are examined in terms of their acoustic behavior when used as range extenders. This is done by simulating the vibrations at the engine mounting positions as well as the intake and exhaust orifice noise. By using a transfer path synthesis, interior noise components of the range extenders are calculated from these excitations.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Tailored Design and Layout for Loss Minimization or Cost-Effective Commonality of Parts - A Contradictory Conflict

2015-01-14
2015-26-0019
In order to minimize the development and production costs in the automotive industry, despite steadily increasing variety of models and applications offered by the OEMs, the pressure on standardization of components and production processes is increasing continuously. As a direct consequence, modular engine families are already established with high degrees of common parts and kits as well as standardized interfaces for all vehicle platforms by most manufacturers these days. At the same time, the world adopted and announced massive legal demands concerning the reduction of CO2 emissions for the entire vehicle fleet. In addition to the optimization of the combustion process, the exhaust gas aftertreatment and thermal management, the use of improved and more resilient materials for higher reduction of mechanical friction leads to a significant amount of the realized lowering in fuel consumption respective CO2 emissions.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
Technical Paper

Robust Emission Compliance and Reduction of System Cost by advanced emission-based Diesel engine air management

2015-01-14
2015-26-0089
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand describes a novel air path control approach, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time. By using a direct emission based cylinder charge control, also alterations in operational ambient conditions are covered with system reactions according to physical-based rules to enhance the engine-out emission performance without need for tuning of corrections of any air path set point.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Optimization of Engine Efficiency and Diesel Aftertreatment System Architecture Using an Integrated System Simulation Approach

2016-02-01
2016-28-0227
As emission regulations are becoming increasingly stringent worldwide, multiple exhaust aftertreatment devices are considered in order to minimize diesel engine tailpipe emissions. For the typical diesel applications in developing markets like India, the fuel consumption is a very decisive selling argument for customers. The total cost of ownership needs to be as low as possible. To meet these competing requirements, the aftertreatment and engines must be optimized at the same time as the performance of the one system affects the other. In state-of-the-art calibration processes, the aftertreatment systems are considered separately from the calibration of the thermodynamics. This conventional approach makes it more challenging to achieve a simultaneous optimization of the fuel consumption and tailpipe emissions under transient operating conditions.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

On the Road Profile Estimation from Vehicle Dynamics Measurements

2021-08-31
2021-01-1115
Ride comfort assessment is undoubtedly related to the interaction between the vehicle tires and the road surface. Indeed, the road profile represents the typical input for tire vertical load estimation in durability analysis and for active/semi-active suspension controller design. However, the road profile evaluation through direct experimental measurements involves long test time and excessive cost required by professional instrumentations to detect the road irregularities with sufficient accuracy. An alternative is shifting attention towards efficient and robust algorithms for indirect road profile evaluation. The object of this work aims at providing road profile estimation starting from vehicle dynamics measurements, through accessible and traditional sensors, with the application of a linear Kalman filter algorithm.
Journal Article

On the Contact Interfaces between the Driver and the Vehicle Seat

2013-04-08
2013-01-0455
In mathematical and mechanical modeling terms, automotive seating is characterized by boundary conditions at the nonlinear contact interfaces. These contact interfaces are subjected to vibro-impacts (slaps) and frictional slips. The slaps occur in contact interfaces at high amplitude vibrations, being characterized by very short duration, rapid dissipation of energy and large accelerations and decelerations. By considering friction in contact interface modeling, the simulation of the interaction between the driver and the vehicle seat becomes more realistic. Vibro-impacts and frictional slips can be simultaneously developed in a contact surface. The boundary conditions identification for a seat and a wide range of drivers' body types is performed using the concept of interference distance or penetration. The interference distance is introduced as an optimization problem. It is shown that the optimization problem provides robust solutions to minimum distance and interference problems.
Technical Paper

NVH Target Cascading from Customer Interface to Vehicle Subsystems

2013-05-13
2013-01-1980
The definition of vehicle and powertrain level targets is one of the first tasks toward establishing where a vehicle will reside with respect to the current or future state of industry. Though development of sound quality metrics is ongoing to better correlate objective data with subjective assessments, target setting at the vehicle level is relatively straightforward. However, realization of these targets depends on effective cascading to system and component levels. Often, component level targets are derived based on experience from earlier development programs, or based on selected characteristics observed during component level benchmarking. An approach is presented here to complement current strategies for component level target definition. This approach involves a systematic concept for definition of component NVH targets based on desired vehicle level performance and a consequent target break down.
Technical Paper

Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication

2004-03-08
2004-01-1601
The paper presents geometric, kinematic and fluid-dynamic modelling of variable displacement vane pumps for low pressure applications in internal combustion engines lubrication. All these fundamental aspects are integrated in a simulation environment and form the core of a design tool leading to the assessment of performance, critical issues, related influences and possible solutions in a well grounded engineering support to decision.
Technical Paper

Mode-shifting Minimization in a Power Management Strategy for Rapid Component Sizing of Multimode Power Split Hybrid Vehicles

2018-04-03
2018-01-1018
The production of multi-mode power-split hybrid vehicles has been implemented for some years now and it is expected to continually grow over the next decade. Control strategy still represents one of the most challenging aspects in the design of these vehicles. Finding an effective strategy to obtain the optimal solution with light computational cost is not trivial. In previous publications, a Power-weighted Efficiency Analysis for Rapid Sizing (PEARS) algorithm was found to be a very promising solution. The issue with implementing a PEARS technique is that it generates an unrealistic mode-shifting schedule. In this paper, the problematic points of PEARS algorithm are detected and analyzed, then a solution to minimize mode-shifting events is proposed. The improved PEARS algorithm is integrated in a design methodology that can generate and test several candidate powertrains in a short period of time.
Technical Paper

Modal Analysis as a Design Tool for Dynamical Optimization of Common Rail Fuel Injection Systems

2015-09-06
2015-24-2467
A challenging task that is required to modern injection systems is represented by the enhanced control of the injected quantities, especially when small injections are considered, such as, pilot and main shots in the context of multiple injections. The propagation of the pressure waves triggered by the nozzle opening and closure events through the high-pressure hydraulic circuit can influence and alter the performance of the injection apparatus. For this reason, an investigation of the injection system fluid dynamics in the frequency domain has been proposed. A complete lumped parameter model of the high-pressure hydraulic circuit has been applied to perform a modal analysis. The visualization of the main vibration modes of the apparatus allows a detailed and deep comprehension of the system dynamics. Furthermore, the possible resonances, which are induced by the action of the external forcing terms, have been identified.
X