Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Potentials of Variable Compressor Pre Swirl Devices in Consideration of Different Sealing Concepts

2013-04-08
2013-01-0934
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
X