Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Upgrade Design of the Yuchai F-6113 HD-DI Diesel Engine

2004-03-08
2004-01-1317
The Yuchai F-6113 is an inline 6-cylinder heavy duty Diesel engine, mainly for truck application with a displacement of 8.4 liters and a rated power of 258 kW. It was derived from the F-6108 with a displacement of 7.3 liters. The boundary conditions for the new crankcase were set by the existing machining line. Substantially increasing the bore diameter while keeping the bore pitch constant, was achieved by replacing the conventional top stop liner with a mid stop liner with open deck. This liner concept is rather unique for heavy duty truck engines. The two 2-valve cylinder heads, covering 3 cylinders each, were replaced by a 4-valve one-piece cylinder head. The design comprises an electronically controlled Unit Pump Injection System (UPS) with the alternative to use an inline injection pump. The engine structure was laid out for the high specific output and the peak cylinder pressure requirements for the compliance with Euro III emission legislation.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process

2005-04-11
2005-01-0762
Controlled Auto Ignition (CAI) as a promising future combustion process is a concept to strongly reduce fuel consumption as well as NOx emissions. The acceptance and the potential of this combustion process depends on the possible CAI operation range in the engine map and the fuel consumption benefit, as well as the complexity of the variable valve train which is necessary to realize the CAI combustion process. The thermodynamic investigations presented in this paper were done on an engine equipped with an electromechanical valve train (EMVT), featuring Port Fuel Injection (PFI) and direct Injection. They show that the electromechanical valve train is an excellent platform for developing the CAI process. Controlled Auto Ignition has been realized with port fuel injection in a speed range between 1000 and 4500 rpm and in a load range between approximately 1 and 6 bar BMEP (about 5 bar BMEP for pressure gradients lower than 3 bar/°CA) depending on engine speed.
Book

The System Integration Process for Accelerated Development

2002-10-31
System Integration Process for Accelerated Development explains how the integration of simultaneous engineering processes into the higher-level strategic business process can help accelerate the conversion of an idea into a finished product, resulting in a competitive advantage.
Technical Paper

The Impact of new Technologies and Tools on the Vehicle and Engine Development Process

2001-03-05
2001-01-0771
Technological progress opens the door for the development of new tools to be used for the development of vehicles and engines. This offers the opportunity for an optimization of the entire workflow on one hand, and an improvement of single tasks on the other hand. This paper describes the actual status of the development process, describes new directions of tool evolvement and finally gives an outlook into the future. Redline ADAPT-SIM is a tool for driver- and vehicle simulation, which was developed primarily for ECU application, but can also be used for other dynamic testing tasks. The introduction of this tool leads to better controllability and therefore also repeatability of tests.
Technical Paper

The Effect of Cranktrain Design on Powertrain NVH

1997-05-20
971994
In the last few years the requirement to optimize powertrain noise and vibration has increased significantly. This was caused by the demand to fulfill the vehicle's exterior noise legislative limits in Europe, and by increased customer awareness for high ride comfort. Much effort concentrated on the engine and the powertrain as prime sources of noise and vibration in a vehicle. The cranktrain with its moving components is a significant source of noise and vibration excitation within the engine. This paper describes results of investigations to evaluate various design alternatives in respect to NVH. The influences of crankshaft material, of balancing rate and of secondary shaking forces are discussed, with the aim to evaluate these various design options.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
Technical Paper

Sound Design Under the Aspects of Musical Harmonic Theory

2003-05-05
2003-01-1508
Sound design of vehicle interior and exterior noise is becoming more and more important for the customer's impression of product quality. To accommodate for this, FEV has developed a sound design method that utilizes FEV VINS (Vehicle Interior Noise Simulation) to design series production relevant hardware modifications. Within a new internal research program, FEV's NVH specialists investigated the theory of musical harmonics and compared the results with engine acoustics in an effort to establish if and what mechanical acoustics can learn from musical harmonics. Looking at engine acoustics from the point of view of musical harmonic theory, the specific combination of half and integer engine orders in particular offers the possibility of creating harmonious noise content. Furthermore, we can estimate how the typical subjective evaluations derive from the integer and half engine orders that occur depending on the engine concept.
Technical Paper

Sound Character of Electric Vehicles

2011-05-17
2011-01-1728
The electrification of vehicle propulsion has caused a significant change in many areas including the world of vehicle acoustics. Comments from the media currently range from “silently hums the future” to “electric car roars with V8 sound”. Decades of experience in designing brand-specific vehicle sound based on noise and vibration generated by combustion engines cannot be simply transferred to the upcoming vehicles driven purely by electric powertrains. Although electric vehicles are almost always considerably quieter than those powered by internal combustion engines, the interior noise is characterized by high-frequency noise components which can be subjectively perceived as annoying and unpleasant. Moreover, such disturbing noise is no longer masked by combustion engine noise. Fundamental questions regarding the sound design of electric vehicles have yet to be answered: it remains unclear what exactly the interior noise of an electric vehicle should sound like.
Technical Paper

Simulation of Endurance and Thermo Cycle Testing for Highly Loaded HSDI Diesel Cylinder Heads

2001-10-01
2001-01-3226
Due to today's demands to reduce cost and product time to market, engineering procedures are increasingly using more sophisticated simulation techniques, instead of validation testing. Early implementation of CAE methods yield higher quality products, even with first prototypes, reducing the design iterations required to reach production quality. The strategy is to conduct specific evaluations of a realistic representation of the product while focusing on the key boundary conditions necessary to extract fatigue effects. Discussed in this paper are adequate CAE methods for early identification, evaluation and removal of conceptual and local structural weaknesses. Possible solutions gained from a computational optimization process are discussed for highly loaded HSDI diesel cylinder heads as a representative example.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

2011-04-12
2011-01-0333
Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
Technical Paper

Prediction of Combustion Process Induced Vehicle Interior Noise

2003-05-05
2003-01-1435
At the present time, combustion process effects on vehicle interior noise can be evaluated only when vehicle and engine are physically available. This Paper deals with a new method for the prediction of combustion process induced vehicle interior noise. The method can be applied already in early combustion system development and allows a time and cost efficient calibration optimization of engine and vehicle. After establishing appropriate transfer weighting functions (engine) and structure transfer functions (vehicle), audible vehicle interior noise is generated based on appropriate cylinder pressure analysis. Combustion process effects on interior noise can be judged subjectively as well as objectively. Thus, combustion process development at the thermodynamic test bench is effectively supported to achieve an optimal compromise with respect to fuel consumption, exhaust emission and interior noise quality.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Plain Bearings in High Performance Engines - Simulation Tools for Advanced Investigations and Layouts

2006-04-03
2006-01-1102
The loads on the plain bearings of modern combustion engines increase continuously. Reasons for this development are increasing engine speeds on gasoline engines, growing cylinder peak pressures at diesel engines and both combined with the steady trend toward light weight concepts. The still significantly increasing power output of modern engines has to be combined with actions reducing the engine friction losses, as for example smaller bearing dimensions or lower engine oil viscosities. At the same time the comfort, lifetime and engine service interval targets are aggravating boundary conditions. This development leads to the point, where former approaches toward plain bearing layout reach their systematic limitations - a first indication are bearing failures, which occur even though all conventional layout criteria's are fulfilled. Further effects need to be considered to simulate the behavior of the plain bearing under the boundary conditions of a fired combustion engine.
Technical Paper

Performance, Fuel Economy, and Emissions Optimization for a 2.2L Multipoint Fuel Injection Gasoline Engine

2002-10-21
2002-01-2845
Future boundary conditions for vehicle engine development will be very complex since they are “functions” of parameters that are difficult to predict: increasingly stringent legislation, changing consumer demand, and availability of resources. The main development goals for passenger cars today are the enhancement of performance and reduction of fuel consumption and cost while facing future emission standards. In China for example, drastic changes in emission regulation have forced the automotive industry to speed up the development processes and shorten the product life cycles. In this respect, the Mianyang Xinchen Engine Co. Ltd, part of Brilliance Group, Mianyang China and FEV Motorentechnik, Aachen Germany conducted a joint project to study Mianyang's 2.2L, 2-valve, multipoint fuel injection (MPI) gasoline engine.
Technical Paper

PIFFO - Piston Friction Force Measurements During Engine Operation

1996-02-01
960306
Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. Particularly in typical city driving, the reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston group has a high share at total engine friction. This offers a high potential to optimize piston group friction. The paper presents results of recent research and development work in the field of the tribological system piston/piston ring/cylinder bore.
X