Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Future Emission Concepts versus Fuel Quality Aspects - Challenges and Technical Concepts

2011-08-30
2011-01-2097
From current point of view future emission legislations for heavy-duty engines as well as industrial engines will require complex engine internal measures in combination with sophisticated aftertreatment systems as well as according control strategies to reach the emission targets. With EU VI, JP 09/NLT and US10 for heavy-duty engines as well as future Tier4 final or stage IV emission legislation for industrial applications, EGR + DPF + SCR probably will be combined for most applications and therefore quite similar technological approaches will be followed up in Europe as well as in the US and in Japan. Most “emerging markets” all over the world follow up the European, US or Japanese emission legislation with a certain time delay. Therefore similar technologies need to be introduced in these markets in the future. On the other hand specific market boundary conditions and requirements have to be considered for the development of tailored system concepts in these markets.
Technical Paper

Ford's SULEV Dedicated Natural Gas Trucks

1997-05-01
971662
Ford Motor Company has introduced its dedicated Natural Gas Vehicle (NGV) trucks as mid-year 1997 offerings to complement its dedicated Crown Victoria and bi-fuel Qualified Vehicle Modifier (QVM) product line-up. The 5.4L F-250 full-size pick-up truck and the 5.4L E-250/E-350 full-size vans are production vehicles maintaining Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements. Both trucks are the first OEM vehicles to certify at the Super Ultra Low Emission Vehicle (SULEV) California medium-duty vehicle standard, the Federal Ultra Low Emission Vehicle (ULEV) standard, and the Federal Inherently Low Emission Vehicle (ILEV) emission standard. The use of natural gas (NG) as a vehicle fuel required unique hardware changes in the areas of fuel storage, fuel metering, and the emission control system.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Design Considerations for Natural Gas Vehicle Catalytic Converters

1993-11-01
933036
Bench reactor experiments were carried out to investigate the effects of operating temperature, precious metal loading, space velocity, and air-fuel (A/F) ratio on the performance of palladium (Pd) catalysts under simulated natural gas vehicle (NGV) exhaust conditions. The performance of these catalysts under simulated gasoline vehicle (GV) conditions was also investigated. In the case of simulated NGV exhaust, where methane was used as the prototypical hydrocarbon (HC) species, peak three-way conversion was obtained under richer conditions than required with simulated GV exhaust (propane and propene HC species). Moreover, the hydrocarbon efficiency of the catalyst under simulated NGV exhaust conditions was more sensitive to both A/F ratio and perturbations in A/F ratio than the HC efficiency under GV exhaust conditions.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Comparison of Engine Dynamometer Test Procedures

1993-11-01
933039
A comparison between ‘Quasi-Transient’ and Steady-State (SAE J1349) engine dynamometer horsepower test procedures was conducted to determine the degree of correlation between the two test methods. Measurements demonstrated that the peak horsepower and torque measured using both techniques was similar. This information is useful as a development tool, because the ‘Quasi-Transient’ procedure allows for data to be collected over the engine RPM range much faster then the Steady-State method, allowing for the accurate testing of more engine/exhaust configurations in a shorter amount of time.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
X