Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improvement of Comfort Aspects for High Efficiency Diesel Engines

2013-01-09
2013-26-0119
Besides an excellent driving performance and power output the reduction of CO2 emission is one of the main driver for the increasing distribution of modern diesel engines. Downsizing/downspeeding, friction reduction, new combustion processes and light weight engine architecture describe additional improvement potentials. Nevertheless, these development trends have a significant influence on the noise and vibration behavior of diesel engines. Therefore measures are also necessary to compensate these acoustic disadvantages. Within this publication the most important and efficient countermeasures are described and assessed. Combustion is still one of the dominant noise sources of a modern diesel engine. Diesel knocking is annoying and the combustion noise level is typically higher than for gasoline engines.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
X