Refine Your Search

Topic

Search Results

Technical Paper

The Technical Ramifications of Downsizing HSDI Diesel Technology to the 300 cc Displacement Class

1998-08-11
981916
Engine downsizing is one of the most promising alternatives for improving fuel economy, while maintaining good emission and NVH behavior. However, the development of a small displacement HSDI Diesel engine with 4-valve technology represents a significant challenge, especially with regard to the design of the top end. This paper summarizes the technical challenges that were overcome to incorporate product requirements for combustion behavior, NVH-performance, and production feasibility during the top end design of the new Ford 1.2 Liter HEV engine. This engine is a state-of-the-art HSDI Diesel engine which features a high pressure common rail fuel injection system, 4-valve cylinder head, cooled EGR, port deactivation, and variable nozzle turbocharger (VNT) technologies. Initial test results with the first prototypes of the 1.2 Liter DIATA engine verify that downsizing can successfully be performed.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
Technical Paper

Shifter Cable Vibration Transfer and Kinematic Simulation: Case Study

2005-05-16
2005-01-2379
The shifter lever is one of the main customer contact points in the vehicle. Vibration levels at this contact point have an effect on perceived vehicle quality. For this reason, shifter lever vibration and the corresponding transfer paths from the transmission to the shifter lever need to be considered during vehicle development. On a recent program, experimental measurements identified the shifter cable to be a significant transfer path for shifter lever vibration. An integrated Computer Aided Engineering (CAE) and experimental effort was undertaken to model and optimize the shifter lever and cable assembly for reduced vibration. Experimental data was used to better understand the vibration phenomenon, set boundary conditions for the CAE modeling, and for correlation. The CAE model contains the shifter lever assembly and a detailed cable assembly model.
Technical Paper

Preinjection A Measure to Optimize the Emission Behavior of DI-Diesel Engine

1994-03-01
940674
Diesel engines continue to offer outstanding benefits in fuel consumption and durability over other engine types. Recently however, the environmental impact of diesel engines has become an increasingly critical factor and has a significant influence on diesel engine development trends. The fuel injection system is one of the most important keys to fulfill the stringent exhaust emissions standards while still maintaining the fuel economy and related CO2 emission benefits of the diesel engine. Research has shown that, to a significant extent, by using the technique of fuel preinjection, DI diesel engines can simultaneously reduce NOx levels and particulate emissions while also improving the level of combustion noise. In addition, the technique has demonstrated the possibility to address these environmentally-focused goals while maintaining low fuel consumption, a characteristic strength of diesel engines, which is directly related to the reductions in CO2 emissions.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 5/10 kW Heavy Fuel Engine for UAVs and APUs

2006-04-03
2006-01-0278
The opposed piston opposed cylinder (opoc™) engine concept has been demonstrated as an engine concept with high specific power density and high power to volume ratio. The engine has several potential applications, including use as an auxiliary power unit (APU) in various commercial and military applications and as the primary power source for small unmanned air vehicles (UAVs). An engine in this power range operating on heavy fuels (e.g. JP5, JP8, DF2) is not typically available. The engine uses a two-cycle supercharged uniflow scavenging system with asymmetric port timing and will run at speeds between 8,000 and 12,000 rpm. The unique design of the opoc™ engine produces a piston speed that is half the speed of a typical crankshaft engine running at the same speed. Uniflow scavenging produces gas exchange efficiencies rivaling those of four-cycle engines. The design also leads to reduced in-cylinder heat losses. Furthermore, the opoc™ engine is fully balanced.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 450 hp Engine: Performance Development by CAE Simulations and Testing

2006-04-03
2006-01-0277
The new opoc™ diesel engine concept was presented at the SAE 2005 World Congress [1]. Exceptional power density of >1hp/lb and >40% efficiency have been predicted for the 2-stroke opoc™ diesel engine concept. Intensive CAE simulations have been performed during the concept and design phase in order to define the baseline scavenging and combustion parameters, such as port timing, turbocharger configuration and fuel injection nozzle design. Under a DARPA contract, first prototype engines have been built and have undergone a validation testing program. The main goal of the first testing phase was to demonstrate the power output capability of the new engine concept. In close relationship and interaction of testing and CAE simulation, the uniflow scavenging process and parameters of the special diesel direct side injection have been optimized. This paper discusses the latest results of the opoc engine development.
Technical Paper

Opposed Piston Opposed Cylinder (opoc) Engine for Military Ground Vehicles

2005-04-11
2005-01-1548
An extremely lightweight opposed piston opposed cylinder (opoc) Diesel engine is under development by FEV Engine Technology under a Defense Advanced Research Projects Agency (DARPA) program. FEV and Advanced Propulsion Technologies (APT) were asked by the U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC) to modify this engine for heavy-truck applications. Analyzing the two stroke scavenging, the side-injection combustion, and the structure of the key components shows the potential of the opoc concept. It is predicted for the 465 kW (650 hp) opoc truck engine: Specific power of the dry engine ∼ 2kW/kg (1.2 hp/lb) Engine Height ∼ 40 cm (16 in) Best Efficiency at two sweetpoints ∼ 206 g/kWh (0.339 lb/hph)
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

Mechanisms of Deposit Formation in Internal Combustion Engines and Heat Exchangers

1993-03-01
931032
During the lifetime of an internal combustion engine, deposits are formed at various locations. In diesel engines, deposits in the combustion chamber and at the injection nozzles lead to an increase in the emissions, especially the particulate emissions, and the exhaust gas odor. Additionally, durability problems can also arise. Deposits in the combustion chamber of SI engines can increase the octane requirement, deposits at intake valves can reduce engine efficiency and driveability and increase emissions. A detailed theory on the mechanism of deposit formation, considering the physical effects, is presented. This theory contains a deposit transport mechanism, a mechanism of deposit attachment including an induction phase, a deposit growth phase and a deposit removal mechanism. This complex theory is based on fundamental investigations at different locations in and around internal combustion engines.
Technical Paper

Investigation on Particle Size Distribution in the Cylinder of a Passenger Car DI Diesel Engine Using a Fast Gas Sampling Valve

1997-02-24
970875
This paper describes research and development activities dealing with a technique which allows the measurement of gaseous and particulate concentrations inside the combustion chamber. This so-called fast-timed gas sampling technique was used for both the observation of the development of gaseous pollutants and soot during combustion and expansion and for getting information about the particle size history. The system has been applied to a modern passenger car DI diesel engine (Volkswagen). The investigation covers the early combustion phase beginning with the start of combustion and throughout the expansion phase until exhaust valve opening. Particles with a size of about 10 nm up to 1 μm were found. Slight variations in the smaller size classes could be observed during the combustion and expansion process.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
Technical Paper

Direct Injection Gasoline Engines - Combustion and Design

1999-03-01
1999-01-0170
The charge motion controlled combustion concept for SI engines with direct fuel injection exhibits an excellent fuel economy and emission potential in comparison with other DI combustion concepts. It realizes a stable combustion behavior all over the engine map. Because injection and ignition timing has little bearing on emission and ignition safety, the new concept can be easily applied under DI specific operational conditions. The combination of fired engine tests and optical investigations with CFD calculations enables an efficient process optimization under the boundary conditions as imposed by the respective design. The high EGR tolerance enables a large reduction of NOx emission, which is the expected basic requirement to meet future emission standards. In addition to favorable part load behavior, the new combustion concept also displays all of the characteristics for a good full load behavior.
Technical Paper

Development of a Diesel Passenger Car Meeting Tier 2 Emissions Levels

2004-03-08
2004-01-0581
Increasing fuel costs, the need to reduce dependence on foreign oil as well as the high efficiency and the desire for superior durability have caused the diesel engine to again become a prime target for light-duty vehicle applications in the United States. In support of this the U.S. Department of Energy (DOE) has engaged in a test project under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity to develop a passenger car with the capability to demonstrate compliance with Tier 2 Bin 5 emission targets with a fresh emission control catalyst system. In order to achieve this goal, a prototype engine was installed in a passenger car and optimized to provide the lowest practical level of engine-out emissions.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Development of Vehicle Sound Quality - Targets and Methods

1995-05-01
951283
Sound quality is becoming a major target for vehicle and powertrain development. To handle this complicated subject effectively it is recommended to define sound targets on a basis of present state analysis or modeling work in close conjunction with an estimation of the technical potential and, in parallel, of digital noise signal manipulation. Thus, the target sound may be defined to a practicable type. Carry over of experienced results has proven to be most important to keep pace with the simultaneous engineering process. This paper concentrates on the sound development process of the powertrain with respect to the vehicle interior noise quality.
Technical Paper

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

2006-04-03
2006-01-0423
The U.S. Tier 2 emission regulations require sophisticated exhaust aftertreatment technologies for diesel engines. One of the projects under the U.S. Department of Energy's (DOE's) Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity focused on the development of a light-duty passenger car with an integrated NOx (oxides of nitrogen) adsorber catalyst (NAC) and diesel particle filter (DPF) technology. Vehicle emissions tests on this platform showed the great potential of the system, achieving the Tier 2 Bin 5 emission standards with new, but degreened emission control systems. The platform development and control strategies for this project were presented in 2004-01-0581 [1]. The main disadvantage of the NOx adsorber technology is its susceptibility to sulfur poisoning. The fuel- and lubrication oil-borne sulfur is converted into sulfur dioxide (SO2) in the combustion process and is adsorbed by the active sites of the NAC.
Technical Paper

Design, Development and Testing of Multi-Cylinder Hydraulic Free-Piston Engines

2005-04-11
2005-01-1167
A hydraulic free-piston engine (FPE), which converts combustion energy directly to hydraulic energy, is being developed by the U. S. EPA due to its potential as a lower-cost and higher-efficiency prime mover for hydraulic series hybrid vehicles. Two prototype engines were designed, fabricated and tested: a two-cylinder engine operating primarily with a two-stroke compression-ignition, direct-injection (CIDI) cycle and a six-cylinder engine operating with a four-stroke CIDI cycle. These engines successfully achieved up to 39% peak hydraulic efficiency under continuously fired operation, while demonstrating exceptional repeatability and control of the cylinder compression ratio. A basic description of the engine design, along with the initial test results from these two prototypes, is presented below.
Technical Paper

Cooled EGR - A Must or an Option for 2002/04

2002-03-04
2002-01-0962
The introduction of the new emission standards in 2002/04 for heavy-duty diesel engines requires a substantial reduction of the NOx emissions while the particulate emissions remain on a constant level. The application of cooled EGR appears to be the most common approach in order to achieve the required target, although other means such as advanced combustion systems and the application of emission control devices to reduce NOx emissions have to be taken into account as well. The purpose of this study is to investigate the potential of such alternative solutions in comparison with cooled EGR to meet the upcoming emission standards.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
X