Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

1996-07-01
961592
As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

1992-07-01
921391
Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Technical Paper

Progress on Development of the Advanced Life Support Human-Rated Test Facility

1995-07-01
951691
NASA's Advanced Life Support Program has included as part of its long-range planning the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. As the designated NASA Field Center responsible for integration and testing of advanced life support systems, Johnson Space Center has undertaken the development of such a facility--the Advanced Life Support Human-Rated Test Facility (HRTF). As conceived, the HRTF is an interconnected five-chamber facility with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system which sustains the crew consists of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated control and monitoring functions.
Technical Paper

Performance Testing of an Advanced Lightweight Freezable Radiator

2006-07-17
2006-01-2232
During extravehicular activities (EVAs) it is crucial to keep the astronaut comfortable. Currently, a sublimator rejects to space both the astronaut's metabolic heat and that produced by the Portable Life Support System. In doing so, it consumes up to 3.6 kg (8 lbm) of water; the single largest expendable during an eight-hour EVA. While acceptable for low earth orbit, resupply for moon and interplanetary missions will be too costly. Fortunately, the amount of water consumed can be greatly reduced if most of the heat load is radiated to space. However, the radiator must reject heat at the same rate that it is generated to prevent heat stroke or frostbite. Herein, we report on a freezable radiator and heat exchanger to proportionally control the heat rejection rate.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Neutral Buoyancy Portable Life Support System Performance Study

1991-07-01
911346
A system performance study on a portable life support system being developed for use in the Weightless Environment Training Facility (WETF) and the Neutral Buoyancy Laboratory (NBL) has been completed. The Neutral Buoyancy Portable Life Support System (NBPLSS) will provide life support to suited astronauts training for extravehicular activity (EVA) under water without the use of umbilicals. The basic configuration is characterized by the use of medium pressure (200 - 300 psi) cryogen (liquid nitrogen/oxygen mixture) which provides cooling within the Extravehicular Mobility Unit (EMU), the momentum which enables flow in the vent loop, and oxygen for breathing. NBPLSS performance was analyzed by using a modified Metabolic Man program to compare competing configurations. Maximum sustainable steady state metabolic rates and transient performance based on a typical WETF metabolic rate profile were determined and compared.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition

2007-07-09
2007-01-3143
Shortly after installation of the service and performance heat exchanger (SPCU HX) in 2001, samples collected from the coolant fluid indicated the presence of nickel accompanied by a subsequent decrease in phosphate concentration along with a high microbial load. When the SPCU HX was replaced and evaluated post-flight, it was expected that the heat exchanger would have significant biofilm and corrosion present given the composition of the coolant fluid; however, there was no evidence of either. Early results from two experiments imply that the heat exchanger materials themselves are inhibiting biofilm formation. This paper discusses the results of one set of experiments and puts forward the inhibition of quorum sensing as a possible mechanism for the lack of biofilm formation.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

First Astronaut - Rover Interaction Field Test

2000-07-10
2000-01-2482
The first ever Astronaut - Rover (ASRO) Interaction Field Test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative surface terrain. This test was a joint effort between the NASA Ames Research Center, Moffett Field, California and the NASA Johnson Space Center, Houston, Texas to investigate the interaction between humans and robotic rovers for potential future planetary surface exploration. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration, it is desirable to better understand the interaction and potential benefits of an Extravehiclar Activity (EVA) crewmember interacting with a robotic rover. This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Enhanced Performance Evaporative Heat Sinks for Space Applications

1998-07-13
981779
An evaporative heat sink has been designed and built by AlliedSignal for NASA's Johnson Space Center. The unit is a demonstrator of a primary heat exchanger for NASA's prototype Crew Return Vehicle (CRV), designated the X-38. The primary heat exchanger is responsible for rejecting the heat produced by both the flight crew and the avionics. Spacecraft evaporative heat sinks utilize space vacuum as a resource to control the vapor pressure of a liquid. For the X-38, water has been chosen as the heat transport fluid. A portion of this coolant flow is bled off for use as the evaporant. At sufficiently low pressures, the water can be made to boil at temperatures approaching its freezing point. Heat transferred to liquid water in this state will cause the liquid to evaporate, thus creating a heat sink for the spacecraft's coolant loop. The CRV mission requires the heat exchanger to be compact and low in mass.
X