Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Hardware Effects on the Wear of Methanol-Fueled Engines

1984-10-01
841377
A 98-hour sequence test has been developed to study the wear of Ford OHC 2.3L methanol fueled engines. This test requires only half the test time of an ASTM Sequence V-D test used by many researchers, and yet provides sufficient severity to generate measurable bore wear to discriminate engine hardware changes. A portable fixture was designed to provide rapid, convenient, and accurate measurement of radial bore wear at a prescribed depth in the cylinder. The fixture can measure radial bore wear with accuracies to 0.004 mm. Its portability allows on-site measurement of engines on dynamometer test stands, or in vehicles with minimal engine disassembly. The test procedure and measurement fixture were used to quantitatively document the ring and bore wear effects of numerous variables, such as fuels, fully formulated lubricants, top ring configurations, coolant temperatures and flow patterns, intake heat addition, and fuel contamination.
X