Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the advantages of the new SAE standard for INVOLUTE SPLINES from a design standpoint

1959-01-01
590056
INVOLUTE SPLINES enjoy three major advantages over their straight-sided counterparts: 1. New design concepts have given a more rational approach to clearances and errors. 2. Manufacturing is cheaper and more accurate. 3. Gaging is simpler. Thus, the involute spline standard of SAE and ASA continue to take precedence over the older straight-sided standards.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Technical Paper

Wave Propagation in Catalytic Converters: A Preliminary Investigation

1997-05-20
971873
The present study investigates the wave propagation and attenuation in catalytic converters. The relationships for wave propagation in a catalytic monolith are derived first and then coupled to the wave propagation in tapered ducts. Analytical predictions are compared with experimental results to validate the theory.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vehicle System Control for Start-Stop Powertrains with Automatic Transmissions

2013-04-08
2013-01-0347
The 2013 Ford Fusion will be launched with an optional automatic engine start-stop feature. To realize engine start-stop on a vehicle equipped with a conventional powertrain, there are two major challenges in the vehicle system controls. First, the propulsive torque delivery from a stopped engine has to be fast. The vehicle launch delay has to be minimized such that the corporate vehicle attributes can be met. Second, the fuel economy improvement offered by this technology has to justify the cost associated with it. In pursuing fuel economy, the driver's comfort and convenience should be minimally impacted. To tackle these challenges, a vehicle system control strategy has been developed to accurately interpret the driver's intent, monitor the vehicle subsystem's power demands, schedule engine automatic stop and re-start, and coordinate the fast and smooth torque delivery to the wheels.
Technical Paper

Vehicle Response to Throttle Tip-In/Tip-Out

1985-05-15
850967
Throttle tip-in/tip-out maneuvers generate a driveline torque transient which may produce an objectionable disturbance to vehicle occupants. Recent developments in vehicle design have contributed to increased severity in this response, which is known as clunk and shuffle. This paper describes experimental procedures which have been developed to quantify response levels and diagnose cases of concern. These techniques are useful for developing engine control systems which require transient strategies that differ greatly from those required for steady state operation. In addition, specific design and calibration modifications, which control clunk and shuffle, are described.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Vapor and Liquid Composition Differences Resulting from Fuel Evaporation

1999-03-01
1999-01-0377
Liquid fuels and the fuel vapors in equilibrium with them typically differ in composition. These differences impact automotive fuel systems in several ways. Large compositional differences between liquid and vapor phases affect the composition of species taken up within the evaporative emission control canister, since the canister typically operates far from saturation and doesn't reach equilibrium with the fuel tank. Here we discuss how these differences may be used to diagnose the mode of emission from a sealed container, e.g., a fuel tank. Liquid or vapor leaks lead to particular compositions (reported here) that depend on the fuel components but are independent of the container material. Permeation leads to emissions whose composition depends on the container material. If information on the relative permeation rates of the different fuel components is available, the results given here provide a tool to decide whether leakage or permeation is the dominant mode of emission.
Technical Paper

Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions

1997-05-01
971650
A simple set of equations has been developed to characterize automotive fuel behavior in fuel tanks, fuel vapor systems and fuel rails, particularly under hot weather conditions. The system of equations links the vapor pressure P, the temperature T, and the mass fraction evaporated Z. Parameters are determined empirically from laboratory vapor pressure and distillation tests. With appropriate values for heat capacity, heat of vaporization, and vapor composition, the equations can be used to estimate upper flammability limits, fuel weathering under hot fuel handling conditions, pressure rise in tanks, and evaporative vapor generation. The equations were developed as part of a larger fuel vapor system model.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
Technical Paper

Using Experimental Modal Modeling Techniques to Investigate Steering Column Vibration and Idle Shake of a Passenger Car

1985-05-15
850996
An experimental modal model of an early prototype car was constructed and validated against test results. The model was then used to suggest practical hardware modification alternatives which would: (1) shift the steering column resonant frequency away from the idle range, and (2) maintain a low steering column tip vibration within the 600-750 RPM idle range. This model was also used to evaluate the effectiveness of tuning radiator mounts to the overall vehicle idle quality. It was found that a pair of braces from either the steering column bracket to brake pedal bracket or to the cowl top area could improve idle shake of the test vehicle. The driver side brake pedal brace alone is not effective. However, the passenger side brake pedal brace alone is as effective as the two brake pedal braces together. It was found that the radiator mounts on the test vehicle are extremely non-linear. Therefore, tuning the mount to improve idle quality is impractical.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Use of E-Mail in Global Virtual Team: a Field Research

2012-10-02
2012-36-0364
In nowadays market, highlighted by global products, companies are pushed to sell products that comply with legal and customer requirements in different countries and, not unusually, different continents. In order to achieve such challenge, and pressed to reduce project and production costs, companies are spreading design centers around the world, based on regional expertise. These excellence centers must work together to benefit from synergies and local skills from different regions. Such projects are staffed by Virtual Team (BINDER, 2007), whose members barely face each other. This means teams will work frequently with people they have never met, who live on different time zones and have different cultures. As a consequence, communication is done basically through computer-based media, mainly based on emailing, and must be even clearer and more direct than with the people who work on the next desk.
Technical Paper

Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation

1996-10-01
962018
Direct-injection spark-ignition (DISI) engines have been investigated for many years but only recently have shown promise as a next generation gasoline engine technology. Much of this new enthusiasm is due to advances in the fuel injection system, which is now capable of producing a well-controlled spray with small droplets. A physical understanding of new combustion systems utilizing this technology is just beginning to occur. This analytical and experimental investigation with a research single-cylinder combustion system shows the benefits of in-cylinder gasoline injection versus injection of fuel into the intake port. Charge cooling with direct injection is shown to improve volumetric efficiency and reduce the mixture temperature at the time of ignition allowing operation with a higher compression ratio which improves the thermodynamic cycle efficiency.
Technical Paper

Understanding the Mechanical Behavior of Threaded Fasteners in Thermoplastic Bosses Under Load

1996-02-01
960293
Because it is common to attach plastic parts to other plastic, metal, or ceramic assemblies with mechanical fasteners that are often stronger and stiffer than the plastic with which they are mated, it is important to be able to predict the retention of the fastener in the polymeric component. The ability to predict this information allows engineers to more accurately estimate length of part service life. A study was initiated to understand the behavior of threaded fasteners in bosses molded from engineering thermoplastic resins. The study examined fastening dynamics during and after insertion of the fastener and the effects of friction on the subsequent performance of the resin. Tests were conducted at ambient temperatures over a range of torques and loads using several fixtures that were specially designed for the study. Materials evaluated include modified-polyphenylene ether (M-PPE), polyetherimide (PEI), polybutylene terephthalate (PBT), and polycarbonate (PC).
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

2002-03-04
2002-01-1047
The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
X