Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Use of Frequency Domain Vibration Methods for Automotive Component Durability

1996-02-01
960971
A simple CAE method of predicting the performance of a component during sine testing has been developed and applied to the practical case of an automotive component. The slow frequency sweep rate during a test is represented as a sequence of steady state conditions. Direct frequency response analysis at the limited number of frequencies is conducted and results used as a basis for prediction of fatigue damage using the Palmgren-Miner rule. The total damage during the test is calculated by linear summation of the damage during each frequency interval. This technique is completely general and can be applied even if there are multiple inputs to the component. A simple extension enables application to engine testing and other cases where excitation may be expressed as a Fourier series expansion of periodic excitations.
Technical Paper

Application of Random Vibration Test Methods for Automotive Subsystems Using Power Spectral Density (PSD)

2000-03-06
2000-01-1331
The object of this paper is to develop a random vibration laboratory test specification for automotive subsystems using the Power Spectral Density (PSD) method. This development is based on the 150k mile field data collected from vehicle proving grounds. The simulated vibration bench test will be used to simulate the energy of the 150k mile field data. The developed specification will include 3 axis random vibration profiles of appropriate duration. The Power Spectral Density method converts the time-domain field data into the frequency-domain data. The Enveloped Energy method groups the similar road PSD profiles to produce a generic PSD profile. The Inverse Law allocates an adjusted duration to the desired PSD energy level. The Road Test Specification provides the duration time for the developed bench test. The n-Soft tool [1] is utilized for data reduction analysis. The Bench Test Specification of the Fuel subsystem is a pilot for this development.
X