Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Windshield Wiper System Motor Selection and Application

1971-02-01
710257
The selection of a motor for a windshield wiper system requires a full analysis of all system variables, in addition to strict adherence to tests and development procedures. Following a well-programmed procedure will assure complete and adequate windshield wiper prime mover selection and successful application. There are five basic steps discussed: 1. Determination of wiper parameters. 2. Motor performance. 3. System load determination. 4. Calibration and matching of wiper motor to system. 5. Testing and evaluating.
Technical Paper

Windshield Wiper Linkage Analysis

1971-02-01
710254
The Kinematic Analysis Methods Computer Program that has been used by Ford Motor Co. to evaluate mechanisms for the past four years has been modified to generate performance curves for windshield wiper linkages directly using a Calcomp Plotter. Problems such as stalling, “jerky” operation, and excessive phase lag between wipers can be detected early in the design stages by careful evaluation of the curves.
Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

Weldability Prediction of AHSS Stackups Using Artificial Neural Network Models

2012-04-16
2012-01-0529
Typical automotive body structures use resistance spot welding for most joining purposes. New materials, such as Advanced High Strength Steels (AHSS) are increasingly used in the construction of automotive body structures to meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle. One of the challenges for implementation of new AHSS materials is weldability assessment. Weld engineers and vehicle program teams spend significant efforts and resources in testing weldability of new sheet metal stack-ups. In this paper, we present a methodology to determine the weldability of sheet metal stack-ups using an Artificial Neural Network-based tool that learns from historical data. The paper concludes by reviewing weldability results predicted by using this tool and comparing with actual test results.
Technical Paper

Verification Testing of the 1970 Anti-Theft Steering Column

1970-02-01
700582
This paper outlines the key elements in a laboratory reliability verification test program for an automotive sub-system. Many of these elements are described in some detail through the various stages of development from prototype concept to production. By means of an actual case study, verification testing of the 1970 Ford Anti-Theft Steering Column, steps required to design tests which yield meaningful information and the rationale used to analyze the results are presented. The steering column on a late model automobile is a complex system which combines several functions and features; steering, shifting, warning devices (turn signal and emergency flashers), ignition switch, anti-theft devices plus several safety features. The effectiveness of the overall verification program is evaluated through the presentation of actual field-feedback results.
Technical Paper

Vehicle Noise and Weight Reduction Using Panel Acoustic Contribution Analysis

1995-05-01
951338
Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve the NVH quality of vehicles. Using PACA areas of vehicle body panels are categorized according to their contribution to the total sound. Positive contribution areas increase the sound level as vibration amplitude increases, negative contribution areas decrease the sound level as vibration amplitude increases, and neutral areas have no significant effect on the sound level. This knowledge is important to guide vehicle NVH refinement. This paper presents the technical approach of PACA and the results of an experiment used to validate the PACA techniques. Vehicle application results to improve NVH quality and reduce weight are also included.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Titania Exhaust Gas Sensor for Automotive Applications

1979-02-01
790140
The change in the resistance of titanium dioxide with oxygen partial pressure is utilized to obtain an air-to-fuel ratio sensor. TiO2 material properties, sensor components and performance characteristics are discussed. Some results of engine dynamometer and vehicle tests of sensor performance and durability are presented.
Technical Paper

Thermal Reliability Prediction of Automotive Electronic Packaging

1995-02-01
950991
The paper briefly reviews the current and future needs for automotive electronic packaging technology and the related reliability issues. Reliability approaches based upon physics-of-failure are discussed, and an example is given to illustrate the importance of understanding the root cause of failure and the application of a state-of-the-art approach to life prediction of leadless solder joints under thermal cycling. An introduction is also given to the recent development of the CAIR (Computer Aided Interconnect Reliability) system developed at Ford for reliability prediction of solder interconnects in automotive electronic packaging. The system integrates a number of software modules using a user interface and allows for evaluation of critical design parameters within a short period of time. The system is intended to implement the “prevention mode” into the product design process to meet the increasing reliability demand and to reduce cost and cycle time.
Technical Paper

The “Peter Principle” Applied to Mini-Computers

1971-02-01
710631
Hierarchical computer systems are an effective way of combining the features of mini- and maxi-computers in automation projects. By distributing the functions in a multi-computer system, the mini-computers can retain the responsiveness and reliability of simple configurations while the more extensive information handling is performed by the larger host computers. This approach overcomes most of the problems found with independent small control systems on one hand and over-extended, centralized computer systems on the other. This philosophy is illustrated with actual applications at Ford Motor Co.
Technical Paper

The Use of Frequency Domain Vibration Methods for Automotive Component Durability

1996-02-01
960971
A simple CAE method of predicting the performance of a component during sine testing has been developed and applied to the practical case of an automotive component. The slow frequency sweep rate during a test is represented as a sequence of steady state conditions. Direct frequency response analysis at the limited number of frequencies is conducted and results used as a basis for prediction of fatigue damage using the Palmgren-Miner rule. The total damage during the test is calculated by linear summation of the damage during each frequency interval. This technique is completely general and can be applied even if there are multiple inputs to the component. A simple extension enables application to engine testing and other cases where excitation may be expressed as a Fourier series expansion of periodic excitations.
Technical Paper

The P2000S Unitized Sport Utility Vehicle Body Structure

2003-03-03
2003-01-0573
The P2000S body structure was designed as part of an advanced research project to determine the feasibility of a high volume, lightweight sport utility vehicle (SUV) that would achieve performance targets of the newly emerging “City SUV” market by developing a unitized (no frame) SUV body structure fabricated principally of aluminum. In order to be viable, this body structure was required to meet all safety, durability, NVH and other functional attributes of a truck while having the ride characteristics of a sedan. This paper describes the P2000S body structure including the structural philosophy, project constraints on the design, manufacturing processes, supporting analyses, assembly processes and unique material and design concepts which resulted in the 50% body structure weight reduction in comparison to similar sized body-on-frame production steel sport utility vehicles.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

1995-11-01
952658
One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

The Long-Term Durability of Thermoplastic Bumpers

1993-03-01
930538
Properties of thermoplastic bumpers made of polycarbonate (PC) and polybutylene terephthalate (PBT) blend were evaluated after several years of service in the field. In this study we measured the Izod impact strength, PC molecular weight, and melt flow rate of bumpers collected from various geographical areas in the U.S. Generally, the system had good impact resistance after more than five years of service in the field, retaining most of the original impact strength. There were small changes in PC average molecular-weights and melt flow rates. The results showed that changes depended on both exposure time and the weather conditions of the environment.
Technical Paper

The Influence of Heat Treat Process and Alloy on the Surface Microstructure and Fatigue Strength of Carburized Alloy Steel

1999-03-01
1999-01-0600
Gas carburized and quenched low alloy steels typically produce surface microstructures which contain martensite, retained austenite and often NMTP's (non-martensitic transformation products). The NMTP's are caused by a reduction of surface hardenability in the carburizing process from loss of alloying elements to oxidation. Gas carburized low alloy steels such as SAE 8620 with NMTP's on the surface have been shown to have inferior bending fatigue properties when compared to more highly alloyed steels which do not form NMTP's, such as SAE 4615M. One method of minimizing the formation of oxides and eliminating NMTP formation during carburizing and quenching is to use plasma carburizing instead of conventional gas carburizing. In this study the microstructures and bending fatigue performance of plasma carburized SAE 8620 and SAE 4615M is compared to the same alloys conventionally gas carburized and quenched.
Technical Paper

The Fourier Transform Applied to Vehicle Exterior Noise Source Identification

1976-02-01
760151
This paper discusses a motor vehicle noise source identification technique designed for use during the SAE J986a or similar drive-by test procedure. It provides, by application of the Fourier Transform, the capability to obtain a narrowband (9.8 Hz) frequency resolution over an extended frequency range (0-10,000 Hz) at the peak vehicle noise level, a particular RPM, or a particular vehicle location in the test zone. Other features include corrections for the Doppler shift, averaging of noise tests, and subtraction of spectra of two separate noise tests from a component disconnect/reconnect procedure. The above analysis, in conjunction with the noise source isolation resulting directly from the disconnect procedure, identifies the major vehicle noise contributors in terms of their respective amplitudes and frequencies.
Technical Paper

The Fatigue Life Prediction Method for Multi-Spot-Welded Structures

1993-03-01
930571
The fatigue strength of spot welds in a multi-spot-welded structure is one of the key issues of concern for achieving structural durability and optimum design in automobile industry. In this study, a global-local fatigue life prediction method is proposed to predict the fatigue life of spot welds in multi-spot-welded structures. In this method, the remote stress-strain field away from the spot-welds, calculated from a global coarse finite element model, is assumed to be acceptable, and is used to recover the stress-strain information of the spot-welds. To improve the accuracy of the remote stress-strain field, an “equivalent” spot weld element is also proposed. The method makes it feasible to predict the fatigue life of spot welds without constructing a detailed finite element model for each spot weld. The method will help reduce finite element model size and save time.
X