Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

Vehicular Emission Performance Simulation

2012-04-16
2012-01-1059
Several emission performance tests like Butane Working Capacity (BWC), Cycle Life, and ORVR load tests are required for the certification of a vehicle; these tests are both expensive and time consuming. This paper presents a test process based upon analytical simulation of BWC of an automotive carbon canister in order to greatly reduce the cost incurred in physical tests. The computational model for the fixed-bed system of a carbon canister is based upon non-equilibrium, non-Isothermal, and non-adiabatic algorithm to simulate the real life loading/purging of hydrocarbon vapors from this device.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

Throttle Body at Engine Idle - Tolerance Effect on Flow Rate

1995-02-01
951057
A small airflow rate at engine idle is required to maintain a low engine speed and to save fuel consumption. Since the throttle plate is almost closed at idle, the plate and bore tolerance becomes important in determining the plate open area and thus the airflow rate. The objective of this work is to use computational fluid dynamics (CFD) analysis as a tool to aid throttle body design and to find out how the tolerance affects the airflow rate. Also, the conventional equation for calculating the throttle plate open area is modified to include the leakage area which is no longer negligible at idle. Throttle bodies with plate closed angles of 4.0 and 4.5 degrees under tight and loose fit conditions were studied. The flow regions above and below the plate are connected by a narrow region between the plate and the bore. This sudden change in flow area creates a big pressure loss across the plate.
Technical Paper

Thermodynamic Loss at Component Interfaces in Stirling Cycles

1992-08-03
929468
The paper considers the thermodynamic irreversibility in Stirling cycle machines at the interface between components with different thermodynamic characteristics. The approach of the paper is to consider the simplest possible cases and to focus on the factors that influence the thermodynamic losses. For example, an ideal adiabatic cylinder facing an ideal isothermal heat exchanger is considered. If there is no mixing in the cylinder (gas remains one dimensionally stratified), there will be no loss (irreversibility) if the gas motion is in phase with the gas pressure changes. If there is a phase shift, as required to have a network for the cylinder, there will be a loss (entropy generation) because the gas will not match the heat exchanger temperature. There will also be a loss if the gas in the cylinder is mixed rather than stratified. Similar simple interface conditions can be considered between components and interconnecting open volumes and between heat exchangers and regenerators.
Technical Paper

The Study of Friction between Piston Ring and Different Cylinder Liners using Floating Liner Engine - Part 1

2012-04-16
2012-01-1334
The objective of this work was to develop an experimental system to support development and validation of a model for the lubrication of two-piece Twin-Land-Oil-Control-Rings (hereafter mentioned as TLOCR). To do so, a floating liner engine was modified by opening the head and crankcase. Additionally, only TLOCR was installed together with a piston that has 100 micron cold clearance to minimize the contribution of the skirt to total friction. Friction traces, FMEP trend, and repeatability have been examined to guarantee the reliability of the experiment results. Then, engine speed, liner temperature, ring tension, and land widths were changed in a wide range to ensure all three lubrication regimes were covered in the experiments.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

The Molecular Analysis of Sulfate Species in Environmental Aerosols Using Chemical Ionization Mass Spectrometry

1977-02-01
770063
Speciation of sulfurous acid, sulfuric acid and ammonium sulfate collected from the aerosol phase on a Fluoropore filter has been readily accomplished using techniques of chemical ionization mass spectrometry combined with thermal separation. Thermal separation of ammonium hydrogen sulfate from ammonium sulfate was not possible. Spectral separation of these species by selective ionization is proposed. Analysis of sulfate aerosols collected from ambient air and catalyzed vehicle emissions is described. It was found that sulfuric acid aerosol was rapidly converted to ammonium sulfate or ammonium hydrogen sulfate in the presence of ambient concentrations of ammonia. Ambient samples collected in the Detroit metropolitan area have been found to contain only trace quantities of sulfuric aicd. Sulfate samples collected from a dilution tube into which catalyzed vehicle exhaust was injected were found to contain significant quantities of ammonium sulfate in addition to sulfuric acid.
Technical Paper

The Mars Gravity Biosatellite: Innovations in Murine Motion Analysis and Life Support

2005-07-11
2005-01-2788
The MIT-based Mars Gravity Biosatellite payload engineering team has been engaged in designing and prototyping sensor and control systems for deployment within the rodent housing zone of the satellite, including novel video processing and atmospheric management tools. The video module will be a fully autonomous real-time analysis system that takes raw video footage of the specimen mice as input and distills those parameters which are of primary physiological importance from a scientific research perspective. Such signals include activity level, average velocity and rearing behavior, all of which will serve as indicators of animal health and vestibular function within the artificial gravity environment. Unlike raw video, these parameters require minimal storage space and can be readily transmitted to earth over a radio link of very low bandwidth.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

1995-02-01
950801
Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
Technical Paper

The Effect of Mileage on Emissions and Emission Component Durability by the Fuel Additive Methylcyclopentadiencyl Manganese Tricarbonyl (MMT)

1992-02-01
920730
Vehicle emissions have been measured and the results statistically evaluated for a vehicle test fleet consisting of four Escorts and four Explorers using both a fully formulated durability fuel doped with methylcyclopentadienyl manganese tricarbonyl (MMT) at 1/32 gram Mn/gallon and the same fully formulated durability fuel without the MMT. The fleet was divided in half -- half with MMT and half without MMT doped fuel. This report covers emission measurement results at 5,000; 15,000; 50,000 and 100,000 miles of exposure to MMT doped fuel. A modified paired t-test is used to analyze the emission data obtained from all the fleet vehicles. The statistical evaluation of both feedgas and tailpipe emissions indicate that the use of MMT is detrimental to emissions of HC at the 15,000 mile; 50,000 mile and 100,000 mile levels of MMT exposure. As mileage is accumulated, the pronounced the effect on HC by the fuel additive MMT.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Effect of Exhaust Gas Recirculation on Combustion and NOx Emissions in a High-Speed Direct-injection Diesel Engine

1996-02-01
960840
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx. In addition to exhaust emission measurements, extensive in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR in suppressing NOx was enhanced considerably by intercooling the inlet charge and by cooling the EGR. A companion paper (SAE 960841) deals with the effects of EGR on soot formation and emission [1].
Technical Paper

Techniques for Analyzing Thermal Deactivation of Automotive Catalysts

1992-10-01
922336
Automotive three-way catalysts (TWC) were characterized using temperature-programmed reduction (TPR), x-ray diffraction (XRD), Raman spectroscopy, chemisorption measurements and laboratory activity measurements. Capabilities and limitations of these standard analytical techniques for the characterization of production-type automotive catalysts are pointed out. With the exception of chemisorption techniques, all appear to have general utility for analyzing exhaust catalysts. The techniques were used to show that the noble metals and ceria in fresh Pt/Rh and Pd/Rh catalysts are initially highly dispersed and contain a mixture of interacting and non-interacting species. Thermal aging of these catalysts (in the reactor or vehicle) caused both precious metal and ceria particles to sinter, thereby decreasing the interaction between the two.
X