Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Vibration Fatigue for Chassis-Mounted, Cantilevered Components

2017-03-28
2017-01-0360
Vehicle chassis mounted cantilevered components should meet two critical design targets: 1) NVH criterion to avoid resonance with road noise and engine vibration and 2) satisfied durability performance to avoid any incident in structure failure and dysfunction. Generally, two types of testing are performed to validate chassis mounted cantilevered component in the design process: shaker table testing and vehicle proving ground testing. Shaker table testing is a powered vibration endurance test performed with load input summarized from real proving ground data and accurate enough to replicate the physical test. The proving ground test is typically performed at critical milestones with full vehicles. Most tests are simplified lab testing to save cost and effort. CAE procedures that virtually replicate these lab tests is even more helpful in the design verification stages.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Vehicle Level EMC Testing Methodology and Correlation

1985-10-01
851646
This paper describes an indoor electromagnetic compatibility (EMC) testing facility designed for automotive testing over the 60 Hz to 18 GHz frequency range. The facility includes a large TEM cell, covering the 60 Hz to 20 MHz frequency range, and a state-of-the-art anechoic chamber, covering 20 MHz to 18 GHz. In addition to describing the test cells, this paper discusses testing methodology, automatic testing software and calibration. Data is presented depicting the electromagnetic field distribution in each test cell with and without the test vehicle in place. Data is also presented showing a typical field distribution near a high power shortwave transmitter site for correlation purposes.
Technical Paper

Vehicle Dynamics Objective Metrics

2003-11-18
2003-01-3631
Among the development phases of an automotive vehicle one can point out the definition of the main characteristics of its suspensions like for example the suspension kinematics and compliances properties. Suspension definition phase can be understood as the following scenario: given a suspension type, which hard points (geometric) and what values of stiffness for the whole system will result in a desired dynamic behavior for the vehicle as well as production feasibility. This present work intends to show the influence of some suspension properties on the global dynamic behavior of the vehicle, having as a target an efficient suspension design. In terms of global dynamic behavior this work point out some control parameters, which describe the vehicle transient and steady-state properties. Those parameters are: Yaw phase lag, understeer gradient, Steady state acceleration gain and yaw overshoot during a maneuver like brake in a turn and power-off in a curve.
Technical Paper

Variable Cam Timing (VCT) Knock Root Cause Analysis and Failure Mode Prevention

2019-01-18
2019-01-5003
Knock in the Camshaft Torque Actuated (CTA) in the Variable Cam Timing (VCT) engine can be a NVH issue and a source of customer complaint. The knock noise usually occurs during hot idle when the VCT phaser is in the locked position and the locking pin is engaged. During a V8 engine development at Ford, the VCT knock noise was observed during hot idle run. In this paper investigation leading to the identification of the root cause through both test and the CAE simulation is presented. The key knock contributors involving torque and its rate of change in addition to the backlash level are discussed. A CAE metric to assess knock occurrence potential for this NVH failure mode is presented. Finally a new design feature in terms of locking pinhole positioning to mitigate or eliminate the knock is discussed.
Journal Article

Using Generic Tyre Parameters for Low Friction Surfaces in Full Vehicle Simulations

2017-03-28
2017-01-1506
An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
Technical Paper

Using Dimensional Analysis to Build a Better Transfer Function

2004-03-08
2004-01-1129
A key ingredient in designing products that are more robust is a thorough knowledge of the physics of the ideal function of those products and the physics of the failure modes of those products. We refer to the mathematical functions describing this physics as the transfer functions for that product. Dimensional analysis (DA) is a well known, but often overlooked, tool for reducing the number of experiments needed to characterize a physical system. In this paper, we demonstrate how the application of DA can be used to reduce the size of a DOE needed to estimate transfer functions experimentally. Furthermore, the transfer function generated using DOEs with DA tend to be more general than those generated using larger DOEs directly on the design parameters. With ever-increasing competitive pressure and reduced product development time, a tool such as DA, which can dramatically reduce experimental cost, is an incredibly valuable addition to an engineers toolbox.
Technical Paper

Using Computer Aided Engineering to Find and Avoid the Steering Wheel “Nibble” Failure Mode

2005-04-11
2005-01-1399
The paradigm for utilizing computer-aided engineering (CAE) to analyze automotive steering and suspension designs is rapidly changing. CAE's role has expanded beyond mere analysis to designing and improving product reliability and robustness. This paper presents an approach for avoiding the steering wheel nibble failure mode by improving robustness and therefore reliability through the use of CAE. For this paper, reliability is the ability of the system to avoid failure modes. A failure mode is any customer perceived deviation from ideal and avoiding failure modes naturally improves reliability. [1]
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Update on Emissions Measurement Performance of a PZEV Test Cell

2006-04-03
2006-01-1359
In Fall of 2001, a new emissions test cell was installed at Ford Motor Company that was specifically designed for precise low-level measurements (as described in Reference 6). The primary design focus for this cell was to ensure that optimal measurement capability was available to test vehicles that meet the stringent Partial Zero Emission Vehicle (PZEV) tailpipe requirements (NMOG = 10 mg/mile, NOx = 20 mg/mile). Over the past four years, there have been numerous improvements to the operational and Quality Assurance (QA) practices used in the PZEV Test Cell. Several investigations have also been performed to demonstrate the quality of its emissions measurements. Finally, a number of “lessons learned” have been documented from our experiences with PZEV measurements and with testing hybrid-electric vehicles. This paper summarizes these findings as a reference for others interested in low-level emissions measurements.
Technical Paper

Up-Front Body Structural Designs for Squeak and Rattle Prevention

2003-05-05
2003-01-1523
Squeak and rattle is one of the major concerns in vehicle design for customer satisfaction. Traditionally squeak and rattle problems are found and fixed at a very late design stage due to lack of up-front CAE prevention and prediction tools. A research work at Ford reveals a correlation between the squeak and rattle performance and diagonal distortions at body closure openings and fastener accelerations in an instrument panel. These findings make it possible to assess squeak and rattle performance implications between different body designs using body-in-prime (B-I-P) and vehicle low frequency noise, vibration and harshness (NVH) CAE models at a very early design stage. This paper is concerned with applications of this squeak and rattle assessment method for up-front body designs prior to a prototype stage.
Technical Paper

Transitioning Automotive Testing from the Road to the Lab

2004-03-08
2004-01-1770
The importance of the automotive test facility has increased significantly due in large part to continuous pressure on manufactures to shorten product development cycles. Test facilities are no longer used only for regulatory testing, or development testing in which the effects of small design changes (A-to-B testing) are determined; automotive manufacturers are beginning to use these facilities for final design validation, which has traditionally required on road testing. A host of resources have gone into the design and construction of facilities with the capability to simulate nearly any environment of practical importance to the automotive industry. As a result, there are now a number of test facilities, and specifically wind tunnels, in which engineers can test most aspects of a vehicle's performance in real-world environments.
Technical Paper

Torque Angle Signature Analysis of Joints with Thread Rolling Screws and Unthreaded Weld Nuts

2007-04-16
2007-01-1665
Bolted joint separation occurs when components of a joint are no longer capable of maintaining a clamp load. The clamp load of a joint is the resultant of various factors such as the strength of joining components, geometry, and the surface condition of the joined parts. The fastener installation torque is a very critical parameter that contributes towards achieving the desired clamping force at the joint during the assembly process. Thread rolling screws are increasingly being used in many automotive structural applications. The thread rolling screws are easy to install, are self aligning, and offer a torque prevailing feature with improved vibration resistance when mated with a un-threaded nut. This combination results in a robust joint and low field costs. They also offer increased joint strength by work hardening the mating nut interface.
Technical Paper

Tire pressure impact on structural durability tests results

2008-10-07
2008-36-0041
During the Product Development Process, the experimental engineers try to acquire the most reliable data from Proving Grounds early on the development process, aiming to support CAE model correlation and in this way ensuring that the vehicle is capable of withstanding customer loads. Those data, from Proving Grounds, are correlated to the most severe customer's usage and public road conditions. The proposal of this paper is to analyze how tire pressure affects structural durability, since safety, performance and fuel economy were already discussed on other opportunities. Tire pressure is important because it's one variable where the customer can monitor and act and because TPMS (Tire Pressure Measurement System) is not available on most vehicles sold in the Brazilian Market,
Technical Paper

Ting Noise Generation in Automotive Applications

2017-03-28
2017-01-1121
Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
X