Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modeling and Measuring Exhaust Backpressure Resulting from Flow Restriction Through an Aftertreatment System

2003-03-03
2003-01-0939
This paper describes the pressure loss characteristics of a variety of substrates (with and without washcoat) that have different cell densities, lengths, and diameters. Both experimental and analytical approaches were used to determine pressure loss characteristics. Engine dynamometer testing was conducted as an experimental approach to measure pressure losses at several different speed and load points. A simple, but comprehensive, analytical model was also developed to estimate pressure loss and equivalent power loss in an exhaust system. The model provides for losses due to the substrate resistance and the inlet/outlet headers. The experimental approach demonstrated that the model was an effective tool to provide assistance during the screening of exhaust system design alternatives.
Technical Paper

Modeling and Laboratory Studies for DeSOx Characteristics of LNT

2006-04-03
2006-01-0470
An analytical model was developed to simulate both sulfur adsorption and desorption characteristics based on the laboratory determined parameters. Diesel Lean NOx Trap (LNT) was tested under laboratory conditions to examine desulfation (deSOx) characteristics. Effects of different Lean/Rich (L/R) cycling of Air-Fuel ratio during the deSOx mode were investigated. The gradient of adsorbed sulfur along the axial direction of the sample LNT was also examined. The gradient of sulfur deposit, together with different L/R cycling combinations for the deSOx mode was critical to develop the efficient sulfur removal strategies. The model considered energy and mass balances during sulfur adsorption and desorption modes to predict the catalyst temperature and the amount of sulfur adsorbed and removed. HC and CO oxidation reactions as well as the oxygen storage were considered to estimate heat generated by the exothermic reactions.
Technical Paper

Laboratory Studies and Mathematical Modeling of Urea SCR Catalyst Performance

2007-04-16
2007-01-1573
This paper presents the development of an analytical model that complements laboratory based experiments to provide a tool for Selective Catalyst Reduction (SCR) applications. The model calibration is based on measured data from NOx reduction performance tests as well as ammonia (NH3) adsorption/desorption tests over select SCR catalyst formulations in a laboratory flow reactor. Only base metal/zeolite SCR samples were evaluated. Limited validations are presented that show the model agrees well with vehicle data from Environmental Protection Agency Federal Test Procedure (EPA FTP) emission assessments. The model includes energy and mass balances, several different NH3 reactions with NOx, NH3 adsorption and desorption algorithms, and NH3 oxidation.
X